BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label University of Exeter. Show all posts
Showing posts with label University of Exeter. Show all posts

Saturday, August 13, 2011

Supergene is key to copycat butterflies


Since Charles Darwin, biologists have pondered the mystery of "mimicry butterflies", which survive by copying the wing patterns of other butterflies that taste horrible to their predators, birds.
This undated handout photo released by the CNRS shows butterflies, Melinaea mneme (top) and Heliconius numata. The mystery of how a butterfly has changed its wing patterns to mimic neighbouring species and avoid being eaten by birds has been solved by a team of European scientists.

The answer, according to a study released on Friday, lies in an astonishing cluster of about 30 genes in a single chromosome.

"We were blown away by what we found," said Mathieu Joron of France's National Museum of Natural History, who led the probe into what is being called a "supergene".

"These butterflies are the 'transformers' of the insect world," said Joron.

"But instead of being able to turn from a car into a robot with the flick of a switch, a single genetic switch allows these insects to morph into several different mimetic forms.

"It is amazing, and the stuff of science fiction. Now we are starting to understand how this switch can have such a pervasive effect."



The trick, known as Muellerian mimicry, was investigated by French and British scientists, who focussed on a species of Amazonian rainforest butterfly, Heliconius numata.

It is able to copy the colour patterns of several species of the Melinaea butterfly which are unpalatable to birds.

The "supergene" comprises a tightly packed region of genes on a single chromosome which control different elements of the wing pattern.

"By changing just one gene, the butterfly is able to fool its predators," explained Richard ffrench-Constant of the University of Exeter, southwestern England.

Even more astonishing is that three versions of the chromosome exist within this species, with each version controlling distinct wing-pattern forms.

Even though the butterflies look quite different from each other, they have the same DNA.

The supergene apparently transmits in a block from generation to generation, rather than go through recombination -- the mingling of genes from both parents.

The "supergene" also appears important in other species, say the authors.

One such species, the peppered moth, developped black wings in 19th-century Britain as a means of gaining camouflage in the sooty industrial environment.

"It's a gene that really packs an evolutionary punch," said ffrench-Constant. The paper is published online by the British science journal Nature.

Friday, June 24, 2011

Study brings brain-like computing a step closer to reality



The development of 'brain-like' computers has taken a major step forward today with the publication of research led by the University of Exeter.

Published in the journal Advanced Materials and funded by the Engineering and Physical Sciences Research Council, the study involved the first ever demonstration of simultaneous information processing and storage using phase-change materials. This new technique could revolutionise computing by making computers faster and more energy-efficient, as well as making them more closely resemble biological systems.

Computers currently deal with processing and memory separately, resulting in a speed and power 'bottleneck' caused by the need to continually move data around. This is totally unlike anything in biology, for example in human brains, where no real distinction is made between memory and computation. To perform these two functions simultaneously the University of Exeter research team used phase-change materials, a kind of semi-conductor that exhibits remarkable properties.

Their study demonstrates conclusively that phase-change materials can store and process information simultaneously. It also shows experimentally for the first time that they can perform general-purpose computing operations, such as addition, subtraction, multiplication and division. More strikingly perhaps it shows that phase-change materials can be used to make artificial neurons and synapses. This means that an artificial system made entirely from phase-change devices could potentially learn and process information in a similar way to our own brains.



Lead author Professor David Wright of the University of Exeter said: "Our findings have major implications for the development of entirely new forms of computing, including 'brain-like' computers. We have uncovered a technique for potentially developing new forms of 'brain-like' computer systems that could learn, adapt and change over time. This is something that researchers have been striving for over many years."

This study focused on the performance of a single phase-change cell. The next stage in Exeter's research will be to build systems of interconnected cells that can learn to perform simple tasks, such as identification of certain objects and patterns.


More information: Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials, DOI: 10.1002/adma.201101060

Abstract

Phase-change materials offer a promising route for the practical realisation of new forms of general-purpose and ‘brain-like’ computers. An experimental proof-of-principle of such remakable capabilities is presented that includes (i) the reliable execution by a phase-change ‘processor’ of the four basic arithmetic functions of addition, subtraction, multiplication and division, (ii) the demonstration of an ‘integrate and fire’ hardware neuron using a single phase-change cell and (iii) the expostion of synaptic-like functionality via the ‘memflector’, an optical analogue of the memristor.

Provided by University of Exeter