BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Sustainable energy. Show all posts
Showing posts with label Sustainable energy. Show all posts

Wednesday, May 4, 2011

Hydrogen Fuel Tech Gets Boost from Low-Cost, Efficient Catalyst



Scientists have engineered a cheap, abundant alternative to the expensive platinum catalyst and coupled it with a light-absorbing electrode to make hydrogen fuel from sunlight and water.
A team of researchers have engineered a cheap, abundant 
alternative to the expensive catalyst platinum and coupled it 
with a light-absorbing electrode to make hydrogen fuel from 
sunlight and water. The discovery was published in Nature 
Materials by theorist Jens Nørskov of the Department of 
Energy's SLAC National Accelerator Laboratory and Stanford 
University and a team of colleagues led by Ib Chorkendorff and 
Søren Dahl at the Technical University of Denmark. The team 
optimized a photo-electrochemical water splitting device by 
designing light absorbers made of silicon arranged in closely 
packed pillars, imaged above using a scanning electron 
microscope. After dotting the pillars with tiny clusters of the 
new catalyst and exposing the pillars to light, researchers 
watched as hydrogen gas bubbled up -- as quickly as if they'd 
used costly platinum. (Credit: Image courtesy of Christian D. 
Damsgaard, Thomas Pedersen and Ole Hansen, 
Technical University of Denmark)

The discovery is an important development in the worldwide effort to mimic the way plants make fuel from sunlight, a key step in creating a green energy economy. It was reported in Nature Materials by theorist Jens Nørskov of the Department of Energy's SLAC National Accelerator Laboratory and Stanford University and a team of colleagues led by Ib Chorkendorff and Søren Dahl at the Technical University of Denmark (DTU).

Hydrogen is an energy dense and clean fuel, which upon combustion releases only water. Today, most hydrogen is produced from natural gas which results in large CO2-emissions. An alternative, clean method is to make hydrogen fuel from sunlight and water. The process is called photo-electrochemical, or PEC, water splitting. When sun hits the PEC cell, the solar energy is absorbed and used for splitting water molecules into its components, hydrogen and oxygen.

Progress has so far been limited in part by a lack of cheap catalysts that can speed up the generation of hydrogen and oxygen. A vital part of the American-Danish effort was combining theory and advanced computation with synthesis and testing to accelerate the process of identifying new catalysts. This is a new development in a field that has historically relied on trial and error. "If we can find new ways of rationally designing catalysts, we can speed up the development of new catalytic materials enormously," Nørskov said.

The team first tackled the hydrogen half of the problem. The DTU researchers created a device to harvest the energy from part of the solar spectrum and used it to power the conversion of single hydrogen ions into hydrogen gas. However, the process requires a catalyst to facilitate the reaction. Platinum is already known as an efficient catalyst, but platinum is too rare and too expensive for widespread use. So the collaborators turned to nature for inspiration.

They investigated hydrogen producing enzymes -- natural catalysts -- from certain organisms, using a theoretical approach Nørskov's group has been developing to describe catalyst behavior. "We did the calculations," Nørskov explained, "and found out why these enzymes work as well as they do." These studies led them to related compounds, which eventually took them to molybdenum sulfide. "Molybdenum is an inexpensive solution" for catalyzing hydrogen production, Chorkendorff said.

The team also optimized parts of the device, introducing a "chemical solar cell" designed to capture as much solar energy as possible. The experimental researchers at DTU designed light absorbers that consist of silicon arranged in closely packed pillars, and dotted the pillars with tiny clusters of the molybdenum sulfide. When they exposed the pillars to light, hydrogen gas bubbled up -- as quickly as if they'd used costly platinum.

The hydrogen gas-generating device is only half of a full photo-electrochemical cell. The other half of the PEC would generate oxygen gas from the water; though hydrogen gas is the goal, without the simultaneous generation of oxygen, the whole PEC cell shuts down. Many groups -- including Chorkendorff, Dahl and Nørskov and their colleagues -- are working on finding catalysts and sunlight absorbers to do this well. "This is the most difficult half of the problem, and we are attacking this in the same way as we attacked the hydrogen side," Dahl said.

Nørskov looks forward to solving that problem as well. "A sustainable energy choice that no one can afford is not sustainable at all," he said. "I hope this approach will enable us to choose a truly sustainable fuel."

Wednesday, April 13, 2011

Green Energy Advance: Tandem Catalysis in Nanocrystal Interfaces


In a development that holds intriguing possibilities for the future of industrial catalysis, as well as for such promising clean green energy technologies as artificial photosynthesis, researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have created bilayered nanocrystals of a metal-metal oxide that are the first to feature multiple catalytic sites on nanocrystal interfaces. These multiple catalytic sites allow for multiple, sequential catalytic reactions to be carried out selectively and in tandem.
In a unique new bilyaer nanocatalyst system, single layers of metal and metal oxide nanocubes are deposited to create two distinct metal--metal oxide interfaces that allow for multiple, sequential catalytic reactions to be carried out selectively and in tandem. (Credit: Image courtesy of Yang group)

"The demonstration of rationally designed and assembled nanocrystal bilayers with multiple built-in metal-metal oxide interfaces for tandem catalysis represents a powerful new approach towards designing high-performance, multifunctional nanostructured catalysts for multiple-step chemical reactions," says the leader of this research Peidong Yang, a chemist who holds joint appointments with Berkeley Lab's Materials Sciences Division, and the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering.

Yang is the corresponding author of a paper describing this research that appears in the journal Nature Chemistry. Co-authoring the paper were Yusuke Yamada, Chia-Kuang Tsung, Wenyu Huang, Ziyang Huo, Susan Habas, Tetsuro Soejima, Cesar Aliaga and leading authority on catalysis Gabor Somorjai.

Catalysts -- substances that speed up the rates of chemical reactions without themselves being chemically changed -- are used to initiate virtually every industrial manufacturing process that involves chemistry. Metal catalysts have been the traditional workhorses, but in recent years, with the advent of nano-sized catalysts, metal,oxide and their interface have surged in importance.



"High-performance metal-oxide nanocatalysts are central to the development of new-generation energy conversion and storage technologies," Yang says. "However, to significantly improve our capability of designing better catalysts, new concepts for the rational design and assembly of metal-metal oxide interfaces are needed."

Studies in recent years have shown that for nanocrystals, the size and shape -- specifically surface faceting with well-defined atomic arrangements -- can have an enormous impact on catalytic properties. This makes it easier to optimize nanocrystal catalysts for activity and selectivity than bulk-sized catalysts. Shape- and size-controlled metal oxide nanocrystal catalysts have shown particular promise.

"It is well-known that catalysis can be modulated by using different metal oxide supports, or metal oxide supports with different crystal surfaces," Yang says. "Precise selection and control of metal-metal oxide interfaces in nanocrystals should therefore yield better activity and selectivity for a desired reaction."

To determine whether the integration of two types of metal oxide interfaces on the surface of a single active metal nanocrystal could yield a novel tandem catalyst for multistep reactions, Yang and his coauthors used the Langmuir-Blodgett assembly technique to deposit nanocube monolayers of platinum and cerium oxide on a silica (silicon dioxide) substrate. The nanocube layers were each less than 10 nanometers thick and stacked one on top of the other to create two distinct metal-metal oxide interfaces -- platinum-silica and cerium oxide-platinum. These two interfaces were then used to catalyze two separate and sequential reactions. First, the cerium oxide-platinum interface catalyzed methanol to produce carbon monoxide and hydrogen. These products then underwent ethylene hydroformylation through a reaction catalyzed by the platinum-silica interface. The final result of this tandem catalysis was propanal.

"The cubic shape of the nanocrystal layers is ideal for assembling metal-metal oxide interfaces with large contact areas," Yang says. "Integrating binary nanocrystals to form highly ordered superlattices is a new and highly effective way to form multiple interfaces with new functionalities."

Yang says that the concept of tandem catalysis through multiple interface design that he and his co-authors have developed should be especially valuable for applications in which multiple sequential reactions are required to produce chemicals in a highly active and selective manner. A prime example is artificial photosynthesis, the effort to capture energy from the sun and transform it into electricity or chemical fuels. To this end, Yang leads the Berkeley component of the Joint Center for Artificial Photosynthesis, a new Energy Innovation Hub created by the U.S. Department of Energy that partners Berkeley Lab with the California Institute of Technology (Caltech).

"Artificial photosynthesis typically involves multiple chemical reactions in a sequential manner, including, for example, water reduction and oxidation, and carbon dioxide reduction," says Yang. "Our tandem catalysis approach should also be relevant to photoelectrochemical reactions, such as solar water splitting, again where sequential, multiple reaction steps are necessary. For this, however, we will need to explore new metal oxide or other semiconductor supports, such as titanium dioxide, in our catalyst design."

This research was supported by the DOE Office of Science.

Sunday, May 2, 2010

Renewable Energy: Inexpensive Metal Catalyst Can Effectively Generate Hydrogen from Water


Hydrogen would command a key role in future renewable energy technologies, experts agree, if a relatively cheap, efficient and carbon-neutral means of producing it can be developed. An important step towards this elusive goal has been taken by a team of researchers with the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley. The team has discovered an inexpensive metal catalyst that can effectively generate hydrogen gas from water.

Me
From left, Jeffrey Long, Christopher Chang and 
Hemamala Karunadasa have discovered an inexpensive 
metal that can generate hydrogen from neutral water, 
even if it is dirty, and can operate in sea water. 
(Credit: Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

"Our new proton reduction catalyst is based on a molybdenum-oxo metal complex that is about 70 times cheaper than platinum, today's most widely used metal catalyst for splitting the water molecule," said Hemamala Karunadasa, one of the co-discoverers of this complex. "In addition, our catalyst does not require organic additives, and can operate in neutral water, even if it is dirty, and can operate in sea water, the most abundant source of hydrogen on earth and a natural electrolyte. These qualities make our catalyst ideal for renewable energy and sustainable chemistry."

Karunadasa holds joint appointments with Berkeley Lab's Chemical Sciences Division and UC Berkeley's Chemistry Department. She is the lead author of a paper describing this work that appears in the April 29, 2010 issue of the journal Nature, titled "A molecular molybdenum-oxo catalyst for generating hydrogen from water." Co-authors of this paper were Christopher Chang and Jeffrey Long, who also hold joint appointments with Berkeley Lab and UC Berkeley. Chang, in addition, is also an investigator with the Howard Hughes Medical Institute (HHMI).

Hydrogen gas, whether combusted or used in fuel cells to generate electricity, emits only water vapor as an exhaust product, which is why this nation would already be rolling towards a hydrogen economy if only there were hydrogen wells to tap. However, hydrogen gas does not occur naturally and has to be produced. Most of the hydrogen gas in the United States today comes from natural gas, a fossil fuel. While inexpensive, this technique adds huge volumes of carbon emissions to the atmosphere. Hydrogen can also be produced through the electrolysis of water -- using electricity to split molecules of water into molecules of hydrogen and oxygen. This is an environmentally clean and sustainable method of production -- especially if the electricity is generated via a renewable technology such as solar or wind -- but requires a water-splitting catalyst.

Nature has developed extremely efficient water-splitting enzymes -- called hydrogenases -- for use by plants during photosynthesis, however, these enzymes are highly unstable and easily deactivated when removed from their native environment. Human activities demand a stable metal catalyst that can operate under non-biological settings.

Metal catalysts are commercially available, but they are low valence precious metals whose high costs make their widespread use prohibitive. For example, platinum, the best of them, costs some $2,000 an ounce.

"The basic scientific challenge has been to create earth-abundant molecular systems that produce hydrogen from water with high catalytic activity and stability," Chang says. "We believe our discovery of a molecular molybdenum-oxo catalyst for generating hydrogen from water without the use of additional acids or organic co-solvents establishes a new chemical paradigm for creating reduction catalysts that are highly active and robust in aqueous media."

The molybdenum-oxo complex that Karunadasa, Chang and Long discovered is a high valence metal with the chemical name of (PY5Me2)Mo-oxo. In their studies, the research team found that this complex catalyzes the generation of hydrogen from neutral buffered water or even sea water with a turnover frequency of 2.4 moles of hydrogen per mole of catalyst per second.

Long says, "This metal-oxo complex represents a distinct molecular motif for reduction catalysis that has high activity and stability in water. We are now focused on modifying the PY5Me ligand portion of the complex and investigating other metal complexes based on similar ligand platforms to further facilitate electrical charge-driven as well as light-driven catalytic processes. Our particular emphasis is on chemistry relevant to sustainable energy cycles."

This research was supported in part by the DOE Office of Science through Berkeley Lab's Helios Solar Energy Research Center, and in part by a grant from the National science Foundation.
Reblog this post [with Zemanta]

Saturday, March 6, 2010

Trapping Sunlight With Silicon Nanowires


Solar cells made from silicon are projected to be a prominent factor in future renewable green energy equations, but so far the promise has far exceeded the reality. While there are now silicon photovoltaics that can convert sunlight into electricity at impressive 20 percent efficiencies, the cost of this solar power is prohibitive for large-scale use. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab), however, are developing a new approach that could substantially reduce these costs. The key to their success is a better way of trapping sunlight.

This photovoltaic cell is comprised of 36 individual arrays of silicon nanowires featuring radial p-n junctions. The color dispersion demonstrates the excellent periodicity over the entire substrate. (Credit: Photo from Peidong Yang)

"Through the fabrication of thin films from ordered arrays of vertical silicon nanowires we've been able to increase the light-trapping in our solar cells by a factor of 73," says chemist Peidong Yang, who led this research. "Since the fabrication technique behind this extraordinary light-trapping enhancement is a relatively simple and scalable aqueous chemistry process, we believe our approach represents an economically viable path toward high-efficiency, low-cost thin-film solar cells."

Yang holds joint appointments with Berkeley Lab's Materials Sciences Division, and the University of California Berkeley's Chemistry Department. He is a leading authority on semiconductor nanowires -- one-dimensional strips of materials whose width measures only one-thousandth that of a human hair but whose length may stretch several microns.

"Typical solar cells are made from very expensive ultrapure single crystal silicon wafers that require about 100 micrometers of thickness to absorb most of the solar light, whereas our radial geometry enables us to effectively trap light with nanowire arrays fabricated from silicon films that are only about eight micrometers thick," he says. "Furthermore, our approach should in principle allow us to use metallurgical grade or "dirty" silicon rather than the ultrapure silicon crystals now required, which should cut costs even further."

Yang has described this research in a paper published in the journal NANO Letters, which he co-authored with Erik Garnett, a chemist who was then a member of Yang's research group.

Generating Electricity from Sunlight

At the heart of all solar cells are two separate layers of material, one with an abundance of electrons that functions as a negative pole, and one with an abundance of electron holes (positively-charged energy spaces) that functions as a positive pole. When photons from the sun are absorbed, their energy is used to create electron-hole pairs, which are then separated at the interface between the two layers and collected as electricity.

Because of its superior photo-electronic properties, silicon remains the photovoltaic semiconductor of choice but rising demand has inflated the price of the raw material. Furthermore, because of the high-level of crystal purification required, even the fabrication of the simplest silicon-based solar cell is a complex, energy-intensive and costly process.

Yang and his group are able to reduce both the quantity and the quality requirements for silicon by using vertical arrays of nanostructured radial p-n junctions rather than conventional planar p-n junctions. In a radial p-n junction, a layer of n-type silicon forms a shell around a p-type silicon nanowire core. As a result, photo-excited electrons and holes travel much shorter distances to electrodes, eliminating a charge-carrier bottleneck that often arises in a typical silicon solar cell. The radial geometry array also, as photocurrent and optical transmission measurements by Yang and Garrett revealed, greatly improves light trapping.

"Since each individual nanowire in the array has a p-n junction, each acts as an individual solar cell," Yang says. "By adjusting the length of the nanowires in our arrays, we can increase their light-trapping path length."

While the conversion efficiency of these solar nanowires was only about five to six percent, Yang says this efficiency was achieved with little effort put into surface passivation, antireflection, and other efficiency-increasing modifications.

"With further improvements, most importantly in surface passivation, we think it is possible to push the efficiency to above 10 percent," Yang says.

Combining a 10 percent or better conversion efficiency with the greatly reduced quantities of starting silicon material and the ability to use metallurgical grade silicon, should make the use of silicon nanowires an attractive candidate for large-scale development.

As an added plus Yang says, "Our technique can be used in existing solar panel manufacturing processes."

This research was funded by the National Science Foundation's Center of Integrated Nanomechanical Systems.





Reblog this post [with Zemanta]