BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Catalysis. Show all posts
Showing posts with label Catalysis. Show all posts

Wednesday, April 27, 2011

Cheaper Hydrogen Fuel Cells: Utility of Non-Precious-Metal Catalysts Documented



Los Alamos National Laboratory scientists have developed a way to avoid the use of expensive platinum in hydrogen fuel cells, the environmentally friendly devices that might replace current power sources in everything from personal data devices to automobiles.
Los Alamos National Laboratory scientists have 
developed a way to avoid the use of expensive 
platinum in hydrogen fuel cells, the environmentally 
friendly devices that might replace current power 
sources in everything from personal data devices 
to automobiles. (Credit: Image courtesy of DOE/Los 
Alamos National Laboratory)

In a paper published April 21 in Science, Los Alamos researchers Gang Wu, Christina Johnston, and Piotr Zelenay, joined by researcher Karren More of Oak Ridge National Laboratory, describe the use of a platinum-free catalyst in the cathode of a hydrogen fuel cell. Eliminating platinum -- a precious metal more expensive than gold -- would solve a significant economic challenge that has thwarted widespread use of large-scale hydrogen fuel cell systems.

Polymer-electrolyte hydrogen fuel cells convert hydrogen and oxygen into electricity. The cells can be enlarged and combined in series for high-power applications, including automobiles. Under optimal conditions, the hydrogen fuel cell produces water as a "waste" product and does not emit greenhouse gasses. However, because the use of platinum in catalysts is necessary to facilitate the reactions that produce electricity within a fuel cell, widespread use of fuel cells in common applications has been cost prohibitive. An increase in the demand for platinum-based catalysts could drive up the cost of platinum even higher than its current value of nearly $1,800 an ounce.

The Los Alamos researchers developed non-precious-metal catalysts for the part of the fuel cell that reacts with oxygen. The catalysts -- which use carbon (partially derived from polyaniline in a high-temperature process), and inexpensive iron and cobalt instead of platinum -- yielded high power output, good efficiency, and promising longevity. The researchers found that fuel cells containing the carbon-iron-cobalt catalyst synthesized by Wu not only generated currents comparable to the output of precious-metal-catalyst fuel cells, but held up favorably when cycled on and off -- a condition that can damage inferior catalysts relatively quickly.

Moreover, the carbon-iron-cobalt catalyst fuel cells effectively completed the conversion of hydrogen and oxygen into water, rather than producing large amounts of undesirable hydrogen peroxide. Inefficient conversion of the fuels, which generates hydrogen peroxide, can reduce power output by up to 50 percent, and also has the potential to destroy fuel cell membranes. Fortunately, the carbon- iron-cobalt catalysts synthesized at Los Alamos create extremely small amounts of hydrogen peroxide, even when compared with state-of-the-art platinum-based oxygen-reduction catalysts.

Because of the successful performance of the new catalyst, the Los Alamos researchers have filed a patent for it.

"The encouraging point is that we have found a catalyst with a good durability and life cycle relative to platinum-based catalysts," said Zelenay, corresponding author for the paper. "For all intents and purposes, this is a zero-cost catalyst in comparison to platinum, so it directly addresses one of the main barriers to hydrogen fuel cells."

The next step in the team's research will be to better understand the mechanism underlying the carbon-iron-cobalt catalyst. Micrographic images of portions of the catalyst by researcher More have provided some insight into how it functions, but further work must be done to confirm theories by the research team. Such an understanding could lead to improvements in non-precious-metal catalysts, further increasing their efficiency and lifespan.

Project funding for the Los Alamos research came from the U.S. Department of Energy's Energy Efficiency and Renewable Energy (EERE) Office as well as from Los Alamos National Laboratory's Laboratory-Directed Research and Development program. Microscopy research was done at Oak Ridge National Laboratory's SHaRE user facility with support from the DOE's Office of Basic Energy Sciences.

Wednesday, April 13, 2011

Green Energy Advance: Tandem Catalysis in Nanocrystal Interfaces


In a development that holds intriguing possibilities for the future of industrial catalysis, as well as for such promising clean green energy technologies as artificial photosynthesis, researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have created bilayered nanocrystals of a metal-metal oxide that are the first to feature multiple catalytic sites on nanocrystal interfaces. These multiple catalytic sites allow for multiple, sequential catalytic reactions to be carried out selectively and in tandem.
In a unique new bilyaer nanocatalyst system, single layers of metal and metal oxide nanocubes are deposited to create two distinct metal--metal oxide interfaces that allow for multiple, sequential catalytic reactions to be carried out selectively and in tandem. (Credit: Image courtesy of Yang group)

"The demonstration of rationally designed and assembled nanocrystal bilayers with multiple built-in metal-metal oxide interfaces for tandem catalysis represents a powerful new approach towards designing high-performance, multifunctional nanostructured catalysts for multiple-step chemical reactions," says the leader of this research Peidong Yang, a chemist who holds joint appointments with Berkeley Lab's Materials Sciences Division, and the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering.

Yang is the corresponding author of a paper describing this research that appears in the journal Nature Chemistry. Co-authoring the paper were Yusuke Yamada, Chia-Kuang Tsung, Wenyu Huang, Ziyang Huo, Susan Habas, Tetsuro Soejima, Cesar Aliaga and leading authority on catalysis Gabor Somorjai.

Catalysts -- substances that speed up the rates of chemical reactions without themselves being chemically changed -- are used to initiate virtually every industrial manufacturing process that involves chemistry. Metal catalysts have been the traditional workhorses, but in recent years, with the advent of nano-sized catalysts, metal,oxide and their interface have surged in importance.



"High-performance metal-oxide nanocatalysts are central to the development of new-generation energy conversion and storage technologies," Yang says. "However, to significantly improve our capability of designing better catalysts, new concepts for the rational design and assembly of metal-metal oxide interfaces are needed."

Studies in recent years have shown that for nanocrystals, the size and shape -- specifically surface faceting with well-defined atomic arrangements -- can have an enormous impact on catalytic properties. This makes it easier to optimize nanocrystal catalysts for activity and selectivity than bulk-sized catalysts. Shape- and size-controlled metal oxide nanocrystal catalysts have shown particular promise.

"It is well-known that catalysis can be modulated by using different metal oxide supports, or metal oxide supports with different crystal surfaces," Yang says. "Precise selection and control of metal-metal oxide interfaces in nanocrystals should therefore yield better activity and selectivity for a desired reaction."

To determine whether the integration of two types of metal oxide interfaces on the surface of a single active metal nanocrystal could yield a novel tandem catalyst for multistep reactions, Yang and his coauthors used the Langmuir-Blodgett assembly technique to deposit nanocube monolayers of platinum and cerium oxide on a silica (silicon dioxide) substrate. The nanocube layers were each less than 10 nanometers thick and stacked one on top of the other to create two distinct metal-metal oxide interfaces -- platinum-silica and cerium oxide-platinum. These two interfaces were then used to catalyze two separate and sequential reactions. First, the cerium oxide-platinum interface catalyzed methanol to produce carbon monoxide and hydrogen. These products then underwent ethylene hydroformylation through a reaction catalyzed by the platinum-silica interface. The final result of this tandem catalysis was propanal.

"The cubic shape of the nanocrystal layers is ideal for assembling metal-metal oxide interfaces with large contact areas," Yang says. "Integrating binary nanocrystals to form highly ordered superlattices is a new and highly effective way to form multiple interfaces with new functionalities."

Yang says that the concept of tandem catalysis through multiple interface design that he and his co-authors have developed should be especially valuable for applications in which multiple sequential reactions are required to produce chemicals in a highly active and selective manner. A prime example is artificial photosynthesis, the effort to capture energy from the sun and transform it into electricity or chemical fuels. To this end, Yang leads the Berkeley component of the Joint Center for Artificial Photosynthesis, a new Energy Innovation Hub created by the U.S. Department of Energy that partners Berkeley Lab with the California Institute of Technology (Caltech).

"Artificial photosynthesis typically involves multiple chemical reactions in a sequential manner, including, for example, water reduction and oxidation, and carbon dioxide reduction," says Yang. "Our tandem catalysis approach should also be relevant to photoelectrochemical reactions, such as solar water splitting, again where sequential, multiple reaction steps are necessary. For this, however, we will need to explore new metal oxide or other semiconductor supports, such as titanium dioxide, in our catalyst design."

This research was supported by the DOE Office of Science.