BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Semiconductor. Show all posts
Showing posts with label Semiconductor. Show all posts

Monday, June 13, 2011

World's first Content Addressable Memory stores data without using power



NEC Corporation and Tohoku University announced today the development of the world's first content addressable memory (CAM) that both maintains the same high operation speed and non-volatile operation as existing circuits when processing and storing data on a circuit while power is off.

NEC's new CAM is a part of spintronics logic integrated circuit technologies that utilize the negative properties of electrons together with the spin magnetic moment. The new CAM utilizes the vertical magnetization of vertical domain wall elements in reaction to magnetic substances in order to enable data that is processing within the CAM to be stored on a circuit without using power. This contrasts to conventional technologies that required data to be stored within memory. As a result, data can be saved on circuits even when power is cut from the CAM.

In recent years, the use of ICT equipment has steadily increased due to the widespread growth of cloud computing. Most existing equipment requires a short amount of time to get started and internal circuits remain active when the equipment is in standby mode. Therefore, the growing consumption of power by ICT equipment in standby mode has become a serious concern.

Use of the new CAM in combination with existing nonvolatile memory is related to greater non-volatility of CPU for electronics and other storage devices. Furthermore, use of this new CAM enables the development of electronics that start instantly and consume zero electricity while in standby mode.

Key features of these newly developed technologies:

• High-speed data retrieval

In order for CAM to be both nonvolatile and maintain a high speed, two spintronics devices, spinning in opposite directions to one another, were connected within the same cell. In terms of constructing the circuit, writing is done once by connecting two devices in a series using recently developed three pin particles that separate the current path into writing and reading.

This new process enables cells to become more compact since the number of writing switches per element is reduced by one. Moreover, the new CAM achieve the same level of high-speed data retrieval as current CMOS based CAM that feature 5ns and low power consumption of 9.4mW.

• Approximately half the circuit area in comparison to existing technologies
In addition to the vertical domain wall element can connect in series by separating the route of current into reading and writing, the newly developed CAM circuit technologies can reduce the number of transistors from eight to three in every two cells by sharing transistors. This results in a 50% CAM area reduction.

NEC developed nonvolatile particles aiming for both greater convenience and energy conservation. Additionally, NEC and Tohoku University developed a simulation technology for a circuit diagram including spintronics particles in parallel with designing technologies for massively large integrated circuits for developments involving the most advanced spintronics logic integrated circuits.

NEC and Tohoku University will announce their latest results on June 17 at VLSI Circuit Symposium 2011 (June 13-17, Kyoto).

Provided by NEC

Monday, March 21, 2011

Miniature Lasers Could Help Launch New Age of the Internet



A new laser device created at the University of Central Florida could make high-speed computing faster and more reliable, opening the door to a new age of the Internet.
Sabine Freisem, a senior research scientist who 
has been collaborating with Deppe for the past eight 
years, works on lasers in their UCF lab. (Credit: UCF)

Professor Dennis Deppe's miniature laser diode emits more intense light than those currently used. The light emits at a single wavelength, making it ideal for use in compact disc players, laser pointers and optical mice for computers, in addition to high-speed data transmission.

Until now, the biggest challenge has been the failure rate of these tiny devices. They don't work very well when they face huge workloads; the stress makes them crack.

The smaller size and elimination of non-semiconductor materials means the new devices could potentially be used in heavy data transmission, which is critical in developing the next generation of the Internet. By incorporating laser diodes into cables in the future, massive amounts of data could be moved across great distances almost instantaneously. By using the tiny lasers in optical clocks, the precision of GPS and high-speed wireless data communications also would increase.

"The new laser diodes represent a sharp departure from past commercial devices in how they are made," Deppe said from his lab inside the College of Optics and Photonics. "The new devices show almost no change in operation under stress conditions that cause commercial devices to rapidly fail."

"At the speed at which the industry is moving, I wouldn't be surprised if in four to five years, when you go to Best Buy to buy cables for all your electronics, you'll be selecting cables with laser diodes embedded in them," he added.

Deppe and Sabine Freisem, a senior research scientist who has been collaborating with Deppe for the past eight years, presented their findings in January at the SPIE (formerly The International Society for Optical Engineering) Photonics West conference in San Francisco.

Deppe has spent 21 years researching semiconductor lasers, and he is considered an international expert in the area. sdPhotonics is working on the commercialization of many of his creations and has several ongoing contracts.

"This is definitely a milestone," Freisem said. "The implications for the future are huge."

But there is still one challenge that the team is working to resolve. The voltage necessary to make the laser diodes work more efficiently must be optimized

Deppe said once that problem is resolved, the uses for the laser diodes will multiply. They could be used in lasers in space to remove unwanted hair.

"We usually have no idea how often we use this technology in our everyday life already," Deppe said. "Most of us just don't think about it. With further development, it will only become more commonplace."
Enhanced by Zemanta

Wednesday, September 29, 2010

A Shot to the Heart: Nanoneedle Delivers Quantum Dots to Cell Nucleus


Getting an inside look at the center of a cell can be as easy as a needle prick, thanks to University of Illinois researchers who have developed a tiny needle to deliver a shot right to a cell's nucleus.
University of Illinois researchers developed a nanoneedle that releases quantum dots directly into the nucleus of a living cell when a small electrical charge is applied. The quantum dots are tracked to gain information about conditions inside the nucleus. (Credit: Image courtesy Min-Feng Yu)

Understanding the processes inside the nucleus of a cell, which houses DNA and is the site for transcribing genes, could lead to greater comprehension of genetics and the factors that regulate expression. Scientists have used proteins or dyes to track activity in the nucleus, but those can be large and tend to be sensitive to light, making them hard to use with simple microscopy techniques.

Researchers have been exploring a class of nanoparticles called quantum dots, tiny specks of semiconductor material only a few molecules big that can be used to monitor microscopic processes and cellular conditions. Quantum dots offer the advantages of small size, bright fluorescence for easy tracking, and excellent stability in light.

"Lots of people rely on quantum dots to monitor biological processes and gain information about the cellular environment. But getting quantum dots into a cell for advanced applications is a problem," said professor Min-Feng Yu, a professor of mechanical science and engineering.

Getting any type of molecule into the nucleus is even trickier, because it's surrounded by an additional membrane that prevents most molecules in the cell from entering.

Yu worked with fellow mechanical science and engineering professor Ning Wang and postdoctoral researcher Kyungsuk Yum to develop a nanoneedle that also served as an electrode that could deliver quantum dots directly into the nucleus of a cell -- specifically to a pinpointed location within the nucleus. The researchers can then learn a lot about the physical conditions inside the nucleus by monitoring the quantum dots with a standard fluorescent microscope.

"This technique allows us to physically access the internal environment inside a cell," Yu said. "It's almost like a surgical tool that allows us to 'operate' inside the cell."

The group coated a single nanotube, only 50 nanometers wide, with a very thin layer of gold, creating a nanoscale electrode probe. They then loaded the needle with quantum dots. A small electrical charge releases the quantum dots from the needle. This provides a level of control not achievable by other molecular delivery methods, which involve gradual diffusion throughout the cell and into the nucleus.

"Now we can use electrical potential to control the release of the molecules attached on the probe," Yu said. "We can insert the nanoneedle in a specific location and wait for a specific point in a biologic process, and then release the quantum dots. Previous techniques cannot do that."

Because the needle is so small, it can pierce a cell with minimal disruption, while other injection techniques can be very damaging to a cell. Researchers also can use this technique to accurately deliver the quantum dots to a very specific target to study activity in certain regions of the nucleus, or potentially other cellular organelles.

"Location is very important in cellular functions," Wang said. "Using the nanoneedle approach you can get to a very specific location within the nucleus. That's a key advantage of this method." The new technique opens up new avenues for study. The team hopes to continue to refine the nanoneedle, both as an electrode and as a molecular delivery system.

They hope to explore using the needle to deliver other types of molecules as well -- DNA fragments, proteins, enzymes and others -- that could be used to study a myriad of cellular processes.

"It's an all-in-one tool," Wang said. "There are three main types of processes in the cell: chemical, electrical, and mechanical. This has all three: It's a mechanical probe, an electrode, and a chemical delivery system."

The team's findings will appear in the Oct. 4 edition of the journal Small. The National Institutes of Health and the National Science Foundation supported this work.

Tuesday, September 28, 2010

Semiconductor Could Turn Heat Into Computing Power


Computers might one day recycle part of their own waste heat, using a material being studied by researchers at Ohio State University.

The material is a semiconductor called gallium manganese arsenide. In the early online edition of Nature Materials, researchers describe the detection of an effect that converts heat into a quantum mechanical phenomenon – known as spin – in a semiconductor.

Once developed, the effect could enable integrated circuits that run on heat, rather than electricity.
Roberto Myers


This research merges two cutting-edge technologies: thermo-electricity and spintronics, explained team leaders Joseph Heremans, Ohio Eminent Scholar in Nanotechnology, and Roberto Myers, assistant professor of materials science and electrical engineering at Ohio State University.
Joseph Heremans


Researchers around the world are working to develop electronics that utilize the spin of electrons to read and write data. So-called “spintronics” are desirable because in principle they could store more data in less space, process data faster, and consume less power.

Myers and Heremans are trying to combine spintronics with thermo-electronics – that is, devices that convert heat to electricity.

The hybrid technology, “thermo-spintronics,” would convert heat to electron spin.

In so doing, thermo-spintronics could solve two problems for the computing industry: how to remove waste heat, and how to boost computing power without creating more heat.

“Spintronics is considered as a possible basis for new computers in part because the technology is claimed to produce no heat. Our measurements shed light on the thermodynamics of spintronics, and may help address the validity of this claim,” Heremans said.

In fact, as the electronics industry tries to build smaller, denser computer circuits, a main limiting factor is the heat those circuits produce, said Myers.

“All of the computers we have now could actually run much faster than they do, but they’re not allowed to – because if they did, they would fail after a short time,” Myers said. “So a huge amount of money in the semiconductor industry is put toward thermal management.”

In one possible use of thermo-spintronics, a device could sit atop a traditional microprocessor, and siphon waste heat away to run additional memory or computation. Myers noted that such applications are still a long way off.

The researchers studied how heat can be converted to spin polarization– an effect called the spin-Seebeck effect. It was first identified by researchers at Tohoku University and reported in a 2008 paper in the journal Nature. Those researchers detected the effect in a piece of metal, rather than a semiconductor.

The new measurements, carried out by team member Christopher Jaworski, doctoral student of mechanical engineering at Ohio State, provide the first independent verification of the effect in a semiconductor material called gallium manganese arsenide.

While gallium arsenide is a semiconductor used in cell phones today, the addition of the element manganese endows the material with magnetic properties.

Samples of this material were carefully prepared into thin single-crystal films by collaborators Shawn Mack and Professor David Awschalom at the University of California at Santa Barbara, who also assisted with interpretation of the results. Jing Yang, doctoral student of materials science and engineering at Ohio State, then processed the samples for the experiment.

In this type of material, the spins of the charges line up parallel with the orientation of the sample’s overall magnetic field. So when the Ohio State researchers were trying to detect the spins of the electrons, they were really measuring whether the electrons in any particular area of the material were oriented as “spin-up” or “spin-down.”

In the experiment, they heated one side of the sample, and then measured the orientations of spins on the hot side and the cool side. On the hot side, the electrons were oriented in the spin-up direction, and on the cool side, they were spin-down.

The researchers also discovered, to their own surprise, that two pieces of the material do not need to be physically connected for the effect to propagate from one to the other.

They scraped away a portion of the sample with a file, to create two pieces of material separated by a tiny gap. If the spin effect were caused by electrical conduction – that is, electrons flowing from one part of the material to the other – then the gap would block the effect from spreading. Again, they applied heat to one side.

The effect persisted.

“We figured that each piece would have its own distribution of spin-up and spin-down electrons,” said Myers. “Instead, one side of the first piece was spin up, and the far side of the second piece was spin down. The effect somehow crossed the gap.”

“The original spin-Seebeck detection by the Tohoku group baffled all theoreticians,” Heremans added. “In this study, we’ve independently confirmed those measurements on a completely different material. We’ve proven we can get the same results as the Tohoku group, even when we take the measurements on a sample that’s been separated into two pieces, so that electrons couldn’t possibly pass between them.”

Despite these new experiments, the origin of the spin-Seebeck effect remains a mystery.

Wednesday, September 15, 2010

Funneling Solar Energy: Antenna Made of Carbon Nanotubes Could Make Photovoltaic Cells More Efficient


Using carbon nanotubes (hollow tubes of carbon atoms), MIT chemical engineers have found a way to concentrate solar energy 100 times more than a regular photovoltaic cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.
This filament containing about 30 million carbon nanotubes absorbs energy from the sun as photons and then re-emits photons of lower energy, creating the fluorescence seen here. The red regions indicate highest energy intensity, and green and blue are lower intensity. (Credit: Geraldine Paulus)

"Instead of having your whole roof be a photovoltaic cell, you could have little spots that were tiny photovoltaic cells, with antennas that would drive photons into them," says Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering and leader of the research team.

Strano and his students describe their new carbon nanotube antenna, or "solar funnel," in the Sept. 12 online edition of the journal Nature Materials. Lead authors of the paper are postdoctoral associate Jae-Hee Han and graduate student Geraldine Paulus.

Their new antennas might also be useful for any other application that requires light to be concentrated, such as night-vision goggles or telescopes.

Solar panels generate electricity by converting photons (packets of light energy) into an electric current. Strano's nanotube antenna boosts the number of photons that can be captured and transforms the light into energy that can be funneled into a solar cell.

The antenna consists of a fibrous rope about 10 micrometers (millionths of a meter) long and four micrometers thick, containing about 30 million carbon nanotubes. Strano's team built, for the first time, a fiber made of two layers of nanotubes with different electrical properties -- specifically, different bandgaps.

In any material, electrons can exist at different energy levels. When a photon strikes the surface, it excites an electron to a higher energy level, which is specific to the material. The interaction between the energized electron and the hole it leaves behind is called an exciton, and the difference in energy levels between the hole and the electron is known as the bandgap.

The inner layer of the antenna contains nanotubes with a small bandgap, and nanotubes in the outer layer have a higher bandgap. That's important because excitons like to flow from high to low energy. In this case, that means the excitons in the outer layer flow to the inner layer, where they can exist in a lower (but still excited) energy state.

Therefore, when light energy strikes the material, all of the excitons flow to the center of the fiber, where they are concentrated. Strano and his team have not yet built a photovoltaic device using the antenna, but they plan to. In such a device, the antenna would concentrate photons before the photovoltaic cell converts them to an electrical current. This could be done by constructing the antenna around a core of semiconducting material.

The interface between the semiconductor and the nanotubes would separate the electron from the hole, with electrons being collected at one electrode touching the inner semiconductor, and holes collected at an electrode touching the nanotubes. This system would then generate electric current. The efficiency of such a solar cell would depend on the materials used for the electrode, according to the researchers.

Strano's team is the first to construct nanotube fibers in which they can control the properties of different layers, an achievement made possible by recent advances in separating nanotubes with different properties.

While the cost of carbon nanotubes was once prohibitive, it has been coming down in recent years as chemical companies build up their manufacturing capacity. "At some point in the near future, carbon nanotubes will likely be sold for pennies per pound, as polymers are sold," says Strano. "With this cost, the addition to a solar cell might be negligible compared to the fabrication and raw material cost of the cell itself, just as coatings and polymer components are small parts of the cost of a photovoltaic cell."

Strano's team is now working on ways to minimize the energy lost as excitons flow through the fiber, and on ways to generate more than one exciton per photon. The nanotube bundles described in the Nature Materials paper lose about 13 percent of the energy they absorb, but the team is working on new antennas that would lose only 1 percent.

Funding: National Science Foundation Career Award, MIT Sloan Fellowship, the MIT-Dupont Alliance and the Korea Research Foundation.

Wednesday, August 18, 2010

A New Way to Use the Sun's Energy


Researchers have demonstrated a new mechanism for converting both sunlight and heat into electricity.

A new type of device that uses both heat and light from the sun should be more efficient than conventional solar cells, which convert only the light into electricity.
Bright heat: Nicholas Melosh has
developed a device for simultaneously
converting the sun’s light and heat into
electricity. Melosh makes and tests the
device in this vacuum chamber in his
lab at Stanford University.
Credit: Technology Review

The device relies on a physical principle discovered and demonstrated by researchers at Stanford University. In their prototype, the energy in sunlight excites electrons in an electrode, and heat from the sun coaxes the excited electrons to jump across a vacuum into another electrode, generating an electrical current. The device could be designed to send waste heat to a steam engine and convert 50 percent of the energy in sunlight into electricity--a huge improvement over conventional solar cells.

The most common silicon solar cells convert about 15 percent of the energy in sunlight into electricity. More than half of the incoming solar energy is lost as heat. That's because the active materials in solar cells can interact with only a particular band of the solar spectrum; photons below a certain energy level simply heat up the cell.

One way to overcome this is to stack active materials on top of one another in a multijunction cell that can use a broader spectrum of light, turning more of it into electrical current instead of heat, for efficiencies up to about 40 percent. But such cells are complex and expensive to make.

Looking for a better way to take advantage of the sun's heat, Stanford's Nicholas Melosh was inspired by highly efficient cogeneration systems that use the expansion of burning gas to drive a turbine and the heat from the combustion to power a steam engine. But thermal energy converters don't pair well with conventional solar devices. The hotter it is, the more efficient thermal energy conversion becomes. Solar cells, by contrast, get less efficient as they heat up. At about 100 °C, a silicon cell won't work well; above 200 °C, it won't work at all.

The breakthrough came when the Stanford researchers realized that the light in solar radiation could enhance energy conversion in a different type of device, called a thermionic energy converter, that's conventionally driven solely by heat. Thermionic converters consist of two electrodes separated by a small space. When the positive electrode, or cathode, is heated, electrons in the cathode get excited and jump across to the negative electrode, or anode, driving a current through an external circuit. These devices have been used to power Russian satellites but haven't found any applications on the ground because they must get very hot, about 1,500 °C, to operate efficiently. The cathode in these devices is typically made of metals such as cesium.

Melosh's group replaced the cesium cathode with a wafer of semiconducting material that can make use of not only heat but also light. When light strikes the cathode, it transmits its energy to electrons in the material in a way that's similar to what happens in a solar cell. This type of energy transfer doesn't happen in the metals used to make these cathodes in the past, but it's typical of semiconductor materials. It doesn't take quite as much heat for these "preëxcited" electrons to jump to the anode, so this new device can operate at lower temperatures than conventional thermionic converters, but at higher temperatures than a solar cell.

The Stanford researchers call this new mechanism PETE, for photon-enhanced thermionic emission. "The light helps lift the energy level of the electrons so that they will flow," says Gang Chen, professor of power engineering at MIT. "It's a long way to a practical device, but this work shows that it's possible," he says.

The Stanford group's prototype, described this month in the journal Nature Materials, uses gallium nitride as the semiconductor. It converts just about 25 percent of the energy in light into electricity at 200 °C, and the efficiency rises with the temperature. Stuart Licht, professor of chemistry at George Washington University, says the process would have an "advantage over solar cells" because it makes use of heat in addition to light. But he cautions: "Additional work will be needed to translate this into a practical, more efficient device."

The Stanford group is now working to do just that. The researchers are testing devices made from materials that are better suited to solar energy conversion, including silicon and gallium arsenide. They're also developing ways of treating these materials so that the device will work more efficiently in a temperature range of 400 °C to 600 °C; solar concentrators would be used to generate such high temperatures from sunlight.

Even at high temperatures, the photon-enhanced thermionic converter will generate more heat than it can use; Melosh says this heat could be coupled to a steam engine for a solar-energy-to-electricity conversion efficiency exceeding 50 percent. These systems are likely to be too complex and expensive for small-scale rooftop installations. But they could be economical for large solar-farm installations, says Melosh, a professor of materials science and engineering. He hopes to have a device ready for commercial development in three years.