BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Oxford University. Show all posts
Showing posts with label Oxford University. Show all posts

Tuesday, March 27, 2012

Brain Size May Determine Whether You Are Good at Keeping Friends



Researchers are suggesting that there is a link between the number of friends you have and the size of the region of the brain -- known as the orbital prefrontal cortex -- that is found just above the eyes. A new study shows that this brain region is bigger in people who have a larger number of friendships.
Friends. Researchers are suggesting that there is a link 
between the number of friends you have and the size of 
the region of the brain -- known as the orbital prefrontal 
cortex -- that is found just above the eyes. 
(Credit: © Rido / Fotolia)

Their study is published on 1 February 2012 in the journal, Proceedings of the Royal Society B.

The research was carried out as part of the British Academy Centenary 'Lucy to Language' project, led by Professor Robin Dunbar of the University of Oxford in a collaboration with Dr Joanne Powell and Dr Marta Garcia-Finana at Liverpool University, Dr Penny Lewis at Manchester University and Professor Neil Roberts at Edinburgh University.

The study suggests that we need to employ a set of cognitive skills to maintain a number of friends (and the keyword is 'friends' as opposed to just the total number of people we know). These skills are described by social scientists as 'mentalising' or 'mind-reading'- a capacity to understand what another person is thinking, which is crucial to our ability to handle our complex social world, including the ability to hold conversations with one another. This study, for the first time, suggests that our competency in these skills is determined by the size of key regions of our brains (in particular, the frontal lobe).

Professor Dunbar, from the Institute of Cognitive and Evolutionary Anthropology, explained: '"Mentalising" is where one individual is able to follow a natural hierarchy involving other individuals' mind states. For example, in the play 'Othello', Shakespeare manages to keep track of five separate mental states: he intended that his audience believes that Iago wants Othello to suppose that Desdemona loves Cassio [the italics signify the different mind states]. Being able to maintain five separate individuals' mental states is the natural upper limit for most adults.'

The researchers took anatomical MR images of the brains of 40 volunteers at the Magnetic Resonance and Image Analysis Research Centre at the University of Liverpool to measure the size of the prefrontal cortex, the part of the brain used in high-level thinking. Participants were asked to make a list of everyone they had had social, as opposed to professional, contact with over the previous seven days. They also took a test to determine their competency in mentalising.

Professor Robin Dunbar, said: 'We found that individuals who had more friends did better on mentalising tasks and had more neural volume in the orbital frontal cortex, the part of the forebrain immediately above the eyes. Understanding this link between an individual's brain size and the number of friends they have helps us understand the mechanisms that have led to humans developing bigger brains than other primate species. The frontal lobes of the brain, in particular, have enlarged dramatically in humans over the last half million years.'

Dr Joanne Powell, from the Department of Psychology, University of Liverpool, said: 'Perhaps the most important finding of our study is that we have been able to show that the relationship between brain size and social network size is mediated by mentalising skills. What this tells us is that the size of your brain determines your social skills, and it is these that allow you have many friends.'

Professor Dunbar said: 'All the volunteers in this sample were postgraduate students of broadly similar ages with potentially similar opportunities for social activities. Of course, the amount of spare time for socialising, geography, personality and gender all influence friendship size, but we also know that at least some of these factors, notably gender, also correlate with mentalising skills. Our study finds there is a link between the ability to read how other people think and social network size.'

Professor Dunbar's research was funded by the British Academy Centenary Research Project and by the British Academy Research Professorship. His research has already examined the different brain sizes of different species, but this study looks at the differences within species. Professor Dunbar published a paper last year, which found that people living near to the Poles needed larger brains for visual processing because of the dimmer light conditions.

Tuesday, October 11, 2011

LHSee - Large Hadron Collider app - Big bang science in your pocket



Want to find out how to Hunt the Higgs Boson using your phone? Ever wondered how the Large Hadron Collider experiments work, and what the collisions look like?


Scientists at the world's biggest scientific experiment - the Large Hadron Collider (LHC)at CERN, Geneva - are trying to answer fundamental questions about the nature of the Universe, the origin of mass, the structure of space and time, and the conditions of the early universe. For those of us not lucky enough to have the world's highest energy particle smasher in our own back gardens, we can still get close to the action using an exciting new smartphone App.

The new App, called 'LHSee', makes the LHC accessible to anybody with a smartphone or tablet PC running the Google Android operating system. Written by Oxford University scientists in collaboration with the ATLAS, one of the four LHC experiments at CERN, it has been designed for experts and non-experts alike.

For the first time you can now grab live collision events from the underground detectors in Geneva, and beam them direct to your own device. As well as a variety of educational resources, the application allows you to interact with the collision events in full 3D graphics. You can also find out how the different parts of the detector work, learn how to identify different types of collision, and even put your new skills to the test by playing the 'Hunt the Higgs' game.

Dr Alan Barr of the University of Oxford says: "I love the detail in the live displays - it's amazing to see that you can pick out the different individual proton collisions."

With help from their international friends within the ATLAS collaboration, the developers offer the App with language support not just in English, but also in French, German, Italian, Spanish and Swedish.

The App is free to download from the Google Android Marketplace.

Monday, July 4, 2011

DNA cages 'can survive inside living cells'


Scientists at Oxford University have shown for the first time that molecular cages made from DNA can enter and survive inside living cells.
Human embryonic kidney cells were used to test the DNA cages

The work, a collaboration between physicists and molecular neuroscientists at Oxford, shows that artificial DNA cages that could be used to carry cargoes of drugs can enter living cells, potentially leading to new methods of drug delivery.

A report of the research is published online in the journal ACS Nano.

The cages developed by the researchers are made from four short strands of synthetic DNA. These strands are designed so that they naturally assemble themselves into a tetrahedron (a pyramid with four triangular faces) around 7 nanometres tall.

The Oxford researchers have previously shown that it is possible to assemble these cages around protein molecules, so that the protein is trapped inside, and that DNA cages can be programmed to open when they encounter specific ‘trigger’ molecules that are found inside cells.



In the new experiment they introduced fluorescently-labelled DNA tetrahedrons into human kidney cells grown in the laboratory. They then examined the cells under the microscope and found that the cages remained substantially intact, surviving attack by cellular enzymes, for at least 48 hours. This is a crucial advance: to be useful as a drug delivery vehicle, a DNA cage must enter cells efficiently and survive until it can release its cargo where and when it is needed.

‘At the moment we are only testing our ability to create and control cages made of DNA,’ said Professor Andrew Turberfield of Oxford University’s Department of Physics, who led the work. ‘However, these results are an important first step towards proving that DNA cages could be used to deliver cargoes, such as drugs, inside living cells.’

Professor Turberfield said: ‘Previous studies have shown that the size of particles is an important factor in whether or not they can easily enter cells, with particles with a radius less than 50 nanometres proving much more successful at gaining entry than larger particles. At 7 nanometres across our DNA tetrahedrons are compact enough to easily enter cells but still large enough to carry a useful cargo. More work is now needed to understand exactly how these DNA cages manage to find their way inside living cells.’
Provided by Oxford University