BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Chemical engineering. Show all posts
Showing posts with label Chemical engineering. Show all posts

Monday, July 11, 2011

U of T researchers build an antenna for light


University of Toronto researchers have derived inspiration from the photosynthetic apparatus in plants to engineer a new generation of nanomaterials that control and direct the energy absorbed from light.

Their findings are reported in a forthcoming issue of Nature Nanotechnology, which will be released on July 10, 2011.

The U of T researchers, led by Professors Shana Kelley and Ted Sargent, report the construction of what they term "artificial molecules."

"Nanotechnologists have for many years been captivated by quantum dots – particles of semiconductor that can absorb and emit light efficiently, and at custom-chosen wavelengths," explained co-author Kelley, a Professor at the Leslie Dan Faculty of Pharmacy, the Department of Biochemistry in the Faculty of Medicine, and the Department of Chemistry in the Faculty of Arts & Science. "What the community has lacked – until now – is a strategy to build higher-order structures, or complexes, out of multiple different types of quantum dots. This discovery fills that gap."

The team combined its expertise in DNA and in semiconductors to invent a generalized strategy to bind certain classes of nanoparticles to one another.

"The credit for this remarkable result actually goes to DNA: its high degree of specificity – its willingness to bind only to a complementary sequence – enabled us to build rationally-engineered, designer structures out of nanomaterials," said Sargent, a Professor in The Edward S. Rogers Sr. Department of Electrical & Computer Engineering at the University of Toronto, who is also the Canada Research Chair in Nanotechnology. "The amazing thing is that our antennas built themselves – we coated different classes of nanoparticles with selected sequences of DNA, combined the different families in one beaker, and nature took its course. The result is a beautiful new set of self-assembled materials with exciting properties."



Traditional antennas increase the amount of an electromagnetic wave – such as a radio frequency – that is absorbed, and then funnel that energy to a circuit. The U of T nanoantennas instead increased the amount of light that is absorbed and funneled it to a single site within their molecule-like complexes. This concept is already used in nature in light harvesting antennas, constituents of leaves that make photosynthesis efficient. "Like the antennas in radios and mobile phones, our complexes captured dispersed energy and concentrated it to a desired location. Like the light harvesting antennas in the leaves of a tree, our complexes do so using wavelengths found in sunlight," explained Sargent.

"Professors Kelley and Sargent have invented a novel class of materials with entirely new properties. Their insight and innovative research demonstrates why the University of Toronto leads in the field of nanotechnology," said Professor Henry Mann, Dean of the Leslie Dan Faculty of Pharmacy.

"This is a terrific piece of work that demonstrates our growing ability to assemble precise structures, to tailor their properties, and to build in the capability to control these properties using external stimuli," noted Paul S. Weiss, Fred Kavli Chair in NanoSystems Sciences at UCLA and Director of the California NanoSystems Institute.

Kelley explained that the concept published in today's Nature Nanotechnology paper is a broad one that goes beyond light antennas alone.

"What this work shows is that our capacity to manipulate materials at the nanoscale is limited only by human imagination. If semiconductor quantum dots are artificial atoms, then we have rationally synthesized artificial molecules from these versatile building blocks."

Wednesday, April 27, 2011

Solar Power Goes Viral: Researchers Use Virus to Improve Solar-Cell Efficiency



Researchers at MIT have found a way to make significant improvements to the power-conversion efficiency of solar cells by enlisting the services of tiny viruses to perform detailed assembly work at the microscopic level.
In this diagram, the M13 virus consists of a strand 
of DNA (the figure-8 coil on the right) attached to a 
bundle of proteins called peptides -- the virus coat 
proteins (the corkscrew shapes in the center) which 
attach to the carbon nanotubes (gray cylinders) 
and hold them in place. A coating of titanium 
dioxide (yellow spheres) attached to dye molecules 
(pink spheres) surrounds the bundle. More of the 
viruses with their coatings are scattered across the 
background. (Credit: Matt Klug, Biomolecular 
Materials Group)

In a solar cell, sunlight hits a light-harvesting material, causing it to release electrons that can be harnessed to produce an electric current. The new MIT research, published online in the journal Nature Nanotechnology, is based on findings that carbon nanotubes -- microscopic, hollow cylinders of pure carbon -- can enhance the efficiency of electron collection from a solar cell's surface.

Previous attempts to use the nanotubes, however, had been thwarted by two problems. First, the making of carbon nanotubes generally produces a mix of two types, some of which act as semiconductors (sometimes allowing an electric current to flow, sometimes not) or metals (which act like wires, allowing current to flow easily). The new research, for the first time, showed that the effects of these two types tend to be different, because the semiconducting nanotubes can enhance the performance of solar cells, but the metallic ones have the opposite effect. Second, nanotubes tend to clump together, which reduces their effectiveness.

And that's where viruses come to the rescue. Graduate students Xiangnan Dang and Hyunjung Yi -- working with Angela Belcher, the W. M. Keck Professor of Energy, and several other researchers -- found that a genetically engineered version of a virus called M13, which normally infects bacteria, can be used to control the arrangement of the nanotubes on a surface, keeping the tubes separate so they can't short out the circuits, and keeping the tubes apart so they don't clump.

The system the researchers tested used a type of solar cell known as dye-sensitized solar cells, a lightweight and inexpensive type where the active layer is composed of titanium dioxide, rather than the silicon used in conventional solar cells. But the same technique could be applied to other types as well, including quantum-dot and organic solar cells, the researchers say. In their tests, adding the virus-built structures enhanced the power conversion efficiency to 10.6 percent from 8 percent -- almost a one-third improvement.

This dramatic improvement takes place even though the viruses and the nanotubes make up only 0.1 percent by weight of the finished cell. "A little biology goes a long way," Belcher says. With further work, the researchers think they can ramp up the efficiency even further.

The viruses are used to help improve one particular step in the process of converting sunlight to electricity. In a solar cell, the first step is for the energy of the light to knock electrons loose from the solar-cell material (usually silicon); then, those electrons need to be funneled toward a collector, from which they can form a current that flows to charge a battery or power a device. After that, they return to the original material, where the cycle can start again. The new system is intended to enhance the efficiency of the second step, helping the electrons find their way: Adding the carbon nanotubes to the cell "provides a more direct path to the current collector," Belcher says.

The viruses actually perform two different functions in this process. First, they possess short proteins called peptides that can bind tightly to the carbon nanotubes, holding them in place and keeping them separated from each other. Each virus can hold five to 10 nanotubes, each of which is held firmly in place by about 300 of the virus's peptide molecules. In addition, the virus was engineered to produce a coating of titanium dioxide (TiO2), a key ingredient for dye-sensitized solar cells, over each of the nanotubes, putting the titanium dioxide in close proximity to the wire-like nanotubes that carry the electrons.

The two functions are carried out in succession by the same virus, whose activity is "switched" from one function to the next by changing the acidity of its environment. This switching feature is an important new capability that has been demonstrated for the first time in this research, Belcher says.

In addition, the viruses make the nanotubes soluble in water, which makes it possible to incorporate the nanotubes into the solar cell using a water-based process that works at room temperature.

Prashant Kamat, a professor of chemistry and biochemistry at Notre Dame University who has done extensive work on dye-sensitized solar cells, says that while others have attempted to use carbon nanotubes to improve solar cell efficiency, "the improvements observed in earlier studies were marginal," while the improvements by the MIT team using the virus assembly method are "impressive."

"It is likely that the virus template assembly has enabled the researchers to establish a better contact between the TiO2 nanoparticles and carbon nanotubes. Such close contact with TiO2 nanoparticles is essential to drive away the photo-generated electrons quickly and transport it efficiently to the collecting electrode surface."

Kamat thinks the process could well lead to a viable commercial product: "Dye-sensitized solar cells have already been commercialized in Japan, Korea and Taiwan," he says. If the addition of carbon nanotubes via the virus process can improve their efficiency, "the industry is likely to adopt such processes."

Belcher and her colleagues have previously used differently engineered versions of the same virus to enhance the performance of batteries and other devices, but the method used to enhance solar cell performance is quite different, she says.

Because the process would just add one simple step to a standard solar-cell manufacturing process, it should be quite easy to adapt existing production facilities and thus should be possible to implement relatively rapidly, Belcher says.

The research team also included Paula Hammond, the Bayer Professor of Chemical Engineering; Michael Strano, the Charles (1951) and Hilda Roddey Career Development Associate Professor of Chemical Engineering; and four other graduate students and postdoctoral researchers. The work was funded by the Italian company Eni, through the MIT Energy Initiative's Solar Futures Program.

Monday, April 25, 2011

Development in Fog Harvesting Process May Make Water Available to the World’s Poor



In the arid Namib Desert on the west coast of Africa, one type of beetle has found a distinctive way of surviving. When the morning fog rolls in, the Stenocara gracilipes species, also known as the Namib Beetle, collects water droplets on its bumpy back, then lets the moisture roll down into its mouth, allowing it to drink in an area devoid of flowing water.
Mesh being tested for use on fog-harvesting devices 
by Shreerang Chhatre and colleagues at MIT
(Credit: Patrick Gillooly)

What nature has developed, Shreerang Chhatre wants to refine, to help the world's poor. Chhatre is an engineer and aspiring entrepreneur at MIT who works on fog harvesting, the deployment of devices that, like the beetle, attract water droplets and corral the runoff. This way, poor villagers could collect clean water near their homes, instead of spending hours carrying water from distant wells or streams. In pursuing the technical and financial sides of his project, Chhatre is simultaneously a doctoral candidate in chemical engineering at MIT; an MBA student at the MIT Sloan School of Management; and a fellow at MIT's Legatum Center for Development and Entrepreneurship.

Access to water is a pressing global issue: the World Health Organization and UNICEF estimate that nearly 900 million people worldwide live without safe drinking water. The burden of finding and transporting that water falls heavily on women and children. "As a middle-class person, I think it's terrible that the poor have to spend hours a day walking just to obtain a basic necessity," Chhatre says.

A fog-harvesting device consists of a fence-like mesh panel, which attracts droplets, connected to receptacles into which water drips. Chhatre has co-authored published papers on the materials used in these devices, and believes he has improved their efficacy. "The technical component of my research is done," Chhatre says. He is pursuing his work at MIT Sloan and the Legatum Center in order to develop a workable business plan for implementing fog-harvesting devices.

Interest in fog harvesting dates to the 1990s, and increased when new research on Stenocara gracilipes made a splash in 2001. A few technologists saw potential in the concept for people. One Canadian charitable organization, FogQuest, has tested projects in Chile and Guatemala.

Chhatre's training as a chemical engineer has focused on the wettability of materials, their tendency to either absorb or repel liquids (think of a duck's feathers, which repel water). A number of MIT faculty have made advances in this area, including Robert Cohen of the Department of Chemical Engineering; Gareth McKinley of the Department of Mechanical Engineering; and Michael Rubner of the Department of Materials Science and Engineering. Chhatre, who also received his master's degree in chemical engineering from MIT in 2009, is co-author, with Cohen and McKinley among other researchers, of three published papers on the kinds of fabrics and coatings that affect wettability.

One basic principle of a good fog-harvesting device is that it must have a combination of surfaces that attract and repel water. For instance, the shell of Stenocara gracilipes has bumps that attract water and troughs that repel it; this way, drops collects on the bumps, then run off through the troughs without being absorbed, so that the water reaches the beetle's mouth.

To build fog-harvesting devices that work on a human scale, Chhatre says, "The idea is to use the design principles we developed and extend them to this problem."

To build larger fog harvesters, researchers generally use mesh, rather than a solid surface like a beetle's shell, because a completely impermeable object creates wind currents that will drag water droplets away from it. In this sense, the beetle's physiology is an inspiration for human fog harvesting, not a template. "We tried to replicate what the beetle has, but found this kind of open permeable surface is better," Chhatre says. "The beetle only needs to drink a few micro-liters of water. We want to capture as large a quantity as possible."

In some field tests, fog harvesters have captured one liter of water (roughly a quart) per one square meter of mesh, per day. Chhatre and his colleagues are conducting laboratory tests to improve the water collection ability of existing meshes.

FogQuest workers say there is more to fog harvesting than technology, however. "You have to get the local community to participate from the beginning," says Melissa Rosato, who served as project manager for a FogQuest program that has installed 36 mesh nets in the mountaintop village of Tojquia, Guatemala, and supplies water for 150 people. "They're the ones who are going to be managing and maintaining the equipment." Because women usually collect water for households, Rosato adds, "If women are not involved, chances of a long-term sustainable project are slim."

Whatever Chhatre's success in the laboratory, he agrees it will not be easy to turn fog-harvesting technology into a viable enterprise. "My consumer has little monetary power," he notes. As part of his Legatum fellowship and Sloan studies, Chhatre is analyzing which groups might use his potential product. Chhatre believes the technology could also work on the rural west coast of India, north of Mumbai, where he grew up.

Another possibility is that environmentally aware communities, schools or businesses in developed countries might try fog harvesting to reduce the amount of energy needed to obtain water. "As the number of people and businesses in the world increases and rainfall stays the same, more people will be looking for alternatives," says Robert Schemenauer, the executive director of FogQuest.

Indeed, the importance of water-supply issues globally is one reason Chhatre was selected for his Legatum fellowship.

"We welcomed Shreerang as a Legatum fellow because it is an important problem to solve," notes Iqbal Z. Quadir, director of the Legatum Center. "About one-third of the planet's water that is not saline happens to be in the air. Collecting water from thin air solves several problems, including transportation. If people do not spend time fetching water, they can be productively employed in other things which gives rise to an ability to pay. Thus, if this technology is sufficiently advanced and a meaningful amount of water can be captured, it could be commercially viable some day."

Quadir also feels that if Chhatre manages to sell a sufficient number of collection devices in the developed world, it could contribute to a reduction in price, making it more viable in poor countries. "The aviation industry in its infancy struggled with balloons, but eventually became a viable global industry," Quadir adds. "Shreerang's project addresses multiple problems at the same time and, after all, the water that fills our rivers and lakes comes from air."

That said, fog harvesting remains in its infancy, technologically and commercially, as Chhatre readily recognizes. "This is still a very open problem," he says. "It's a work in progress."

Wednesday, September 15, 2010

New Artificial Skin Could Make Prosthetic Limbs and Robots More Sensitive


The light, tickling tread of a pesky fly landing on your face may strike most of us as one of the most aggravating of life's small annoyances. But for scientists working to develop pressure sensors for artificial skin for use on prosthetic limbs or robots, skin sensitive enough to feel the tickle of fly feet would be a huge advance. Now Stanford researchers have built such a sensor.
The sensor is sensitive enough to easily detect this Peruvian butterfly (Chorinea faunus) with transparent wings and red-tipped tails, positioned on a sheet of the sensors. (Credit: Linda Cicero, Stanford University News Service)

By sandwiching a precisely molded, highly elastic rubber layer between two parallel electrodes, the team created an electronic sensor that can detect the slightest touch.

"It detects pressures well below the pressure exerted by a 20 milligram bluebottle fly carcass we experimented with, and does so with unprecedented speed," said Zhenan Bao, an associate professor of chemical engineering who led the research.

The key innovation in the new sensor is the use of a thin film of rubber molded into a grid of tiny pyramids, Bao said. She is the senior author of a paper published Sept. 12 online by Nature Materials.

Previous attempts at building a sensor of this type using a smooth film encountered problems.

"We found that with a very thin continuous film, when you press on it, the material does not have room to expand," said Stefan Mannsfeld, a former postdoctoral researcher in chemical engineering and a coauthor. "So the molecules in the continuous rubber film are forced closer together and become entangled. When pressure is released, they cannot go back to the original arrangement, so the sensor doesn't work as well."

"The microstructuring we developed makes the rubber behave more like an ideal spring," Mannsfeld said. The total thickness of the artificial skin, including the rubber layer and both electrodes, is less than one millimeter.

The speed of compression and rebound of the rubber is critical for the sensor to be able to detect -- and distinguish between -- separate touches in quick succession.

The thin rubber film between the two electrodes stores electrical charges, much like a battery. When pressure is exerted on the sensor, the rubber film compresses, which changes the amount of electrical charges the film can store. That change is detected by the electrodes and is what enables the sensor to transmit what it is "feeling."

The largest sheet of sensors that Bao's group has produced to date measures about seven centimeters on a side. The sheet exhibited a great deal of flexibility, indicating it should perform well when wrapped around a surface mimicking the curvature of something such as a human hand or the sharp angles of a robotic arm.

Bao said that molding the rubber in different shapes yields sensors that are responsive to different ranges of pressure. "It's the same as for human skin, which has a whole range of sensitivities," she said. "Fingertips are the most sensitive, while the elbow is quite insensitive."

The sensors have from several hundred thousand up to 25 million pyramids per square centimeter. Under magnification, the array of tiny structures looks like the product of an ancient Egyptian micro-civilization obsessed with order and gone mad with productivity.

But that density allows the sensors to perceive pressures "in the range of a very, very gentle touch," Bao said. By altering the configuration of the microstructure or the density of the sensors, she thinks the sensor can be refined to detect subtleties in the shape of an object.

"If we can make this in higher resolution, then potentially we should be able to have the image on a coin read by the sensor," she said. A robotic hand covered with the electronic skin could feel a surface and know rough from smooth.

That degree of sensitivity could make the sensors useful in a broad range of medical applications, including robotic surgery, Bao said. In addition, using bandages equipped with the sensors could aid in healing of wounds and incisions. Doctors could use data from the sensors to be sure the bandages were not too tight.

Automobile safety could also be enhanced. "If a driver is tired, or drunk, or falls asleep at the wheel, their hands might loosen or fall off the wheel," said Benjamin Tee, graduate student in electrical engineering and a coauthor. "If there are pressure sensors that can sense that no hands are holding the steering wheel, the car could be equipped with some automatic safety device that could sound an alarm or kick in to slow the car down. This could be simpler and cost less than other methods of detecting driver fatigue."

The team also invented a new type of transistor in which they used the structured, flexible rubber film to replace a component that is normally rigid in a typical transistor. When pressure is applied to their new transistor, the pressure causes a change in the amount of current that the transistor puts out. The new, flexible transistors could also be used in making artificial skin, Bao said.

As Bao's team continues its research, the members may find applications not yet considered as well as other ways to demonstrate the sensitivity of their sensors. They have already expanded their stable of insects beyond the bluebottle fly to include some beautiful, delicate looking -- albeit slightly heavier -- butterflies.

But if the researchers wanted an even more ethereal demonstration, could the sensors detect the bubbles rising in a glass of champagne?

"If the bubbles coming out from the champagne impinge onto the pressure sensor, that might be possible," Bao said. "That would be an interesting experiment to do in the lab."

Tuesday, September 7, 2010

New Self-Assembling Photovoltaic Technology Repairs Itself


Plants are good at doing what scientists and engineers have been struggling to do for decades: converting sunlight into stored energy, and doing so reliably day after day, year after year. Now some MIT scientists have succeeded in mimicking a key aspect of that process.
This proof-of-concept version of the 
photoelectrochemical cell, which was used for 
laboratorytests, contains a photoactive 
solution made up of a mix of self-assembling 
molecules (in a glass cylinder held in place 
by metal clamp) with two electrodes protruding
from the top, one made of platinum 
(the bare wire) and the other of silver 
(in a glass tube). (Credit: Patrick Gillooly)

One of the problems with harvesting sunlight is that the sun's rays can be highly destructive to many materials. Sunlight leads to a gradual degradation of many systems developed to harness it. But plants have adopted an interesting strategy to address this issue: They constantly break down their light-capturing molecules and reassemble them from scratch, so the basic structures that capture the sun's energy are, in effect, always brand new.

That process has now been imitated by Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering, and his team of graduate students and researchers. They have created a novel set of self-assembling molecules that can turn sunlight into electricity; the molecules can be repeatedly broken down and then reassembled quickly, just by adding or removing an additional solution. Their paper on the work was published on Sept. 5 in Nature Chemistry.

Strano says the idea first occurred to him when he was reading about plant biology. "I was really impressed by how plant cells have this extremely efficient repair mechanism," he says. In full summer sunlight, "a leaf on a tree is recycling its proteins about every 45 minutes, even though you might think of it as a static photocell."

One of Strano's long-term research goals has been to find ways to imitate principles found in nature using nanocomponents. In the case of the molecules used for photosynthesis in plants, the reactive form of oxygen produced by sunlight causes the proteins to fail in a very precise way. As Strano describes it, the oxygen "unsnaps a tether that keeps the protein together," but the same proteins are quickly reassembled to restart the process.

This action all takes place inside tiny capsules called chloroplasts that reside inside every plant cell -- and which is where photosynthesis happens. The chloroplast is "an amazing machine," Strano says. "They are remarkable engines that consume carbon dioxide and use light to produce glucose," a chemical that provides energy for metabolism.

To imitate that process, Strano and his team, supported by grants from the MIT Energy Initiative and the Department of Energy, produced synthetic molecules called phospholipids that form discs; these discs provide structural support for other molecules that actually respond to light, in structures called reaction centers, which release electrons when struck by particles of light. The discs, carrying the reaction centers, are in a solution where they attach themselves spontaneously to carbon nanotubes -- wire-like hollow tubes of carbon atoms that are a few billionths of a meter thick yet stronger than steel and capable of conducting electricity a thousand times better than copper. The nanotubes hold the phospholipid discs in a uniform alignment so that the reaction centers can all be exposed to sunlight at once, and they also act as wires to collect and channel the flow of electrons knocked loose by the reactive molecules.

The system Strano's team produced is made up of seven different compounds, including the carbon nanotubes, the phospholipids, and the proteins that make up the reaction centers, which under the right conditions spontaneously assemble themselves into a light-harvesting structure that produces an electric current. Strano says he believes this sets a record for the complexity of a self-assembling system. When a surfactant -- similar in principle to the chemicals that BP has sprayed into the Gulf of Mexico to break apart oil -- is added to the mix, the seven components all come apart and form a soupy solution. Then, when the researchers removed the surfactant by pushing the solution through a membrane, the compounds spontaneously assembled once again into a perfectly formed, rejuvenated photocell.

"We're basically imitating tricks that nature has discovered over millions of years" -- in particular, "reversibility, the ability to break apart and reassemble," Strano says. The team, which included postdoctoral researcher Moon-Ho Ham and graduate student Ardemis Boghossian, came up with the system based on a theoretical analysis, but then decided to build a prototype cell to test it out. They ran the cell through repeated cycles of assembly and disassembly over a 14-hour period, with no loss of efficiency.

Strano says that in devising novel systems for generating electricity from light, researchers don't often study how the systems change over time. For conventional silicon-based photovoltaic cells, there is little degradation, but with many new systems being developed -- either for lower cost, higher efficiency, flexibility or other improved characteristics -- the degradation can be very significant. "Often people see, over 60 hours, the efficiency falling to 10 percent of what you initially saw," he says.

The individual reactions of these new molecular structures in converting sunlight are about 40 percent efficient, or about double the efficiency of today's best commercial solar cells. Theoretically, the efficiency of the structures could be close to 100 percent, he says. But in the initial work, the concentration of the structures in the solution was low, so the overall efficiency of the device -- the amount of electricity produced for a given surface area -- was very low. They are working now to find ways to greatly increase the concentration.

Wednesday, July 21, 2010

Artificial Cells Behave Like Biological Cells


Inspired by the social interactions of ants and slime molds, University of Pittsburgh engineers have designed artificial cells capable of self-organizing into independent groups that can communicate and cooperate.
Image
The above image shows the cells in “snake” formation 
as competing signaling capsules (shown in red) pull 
respective lines of target cells in opposite 
directions. (Credit: University of Pittsburgh)

Recently reported in the Proceedings of the National Academy of Sciences (PNAS), the research is a significant step toward producing synthetic cells that behave like natural organisms and could perform important, microscale functions in fields ranging from the chemical industry to medicine.

The team presents in the PNAS paper computational models that provide a blueprint for developing artificial cells -- or microcapsules -- that can communicate, move independently, and transport "cargo" such as chemicals needed for reactions. Most importantly, the "biologically inspired" devices function entirely through simple physical and chemical processes, behaving like complex natural organisms but without the complicated internal biochemistry, said corresponding author Anna Balazs, Distinguished Professor of Chemical Engineering in Pitt's Swanson School of Engineering.

The Pitt group's microcapsules interact by secreting nanoparticles in a way similar to that used by biological cells signal to communicate and assemble into groups. And with a nod to ants, the cells leave chemical trails as they travel, prompting fellow microcapsules to follow. Balazs worked with lead author German Kolmakov and Victor Yashin, both postdoctoral researchers in Pitt's Department of Chemical and Petroleum Engineering, who produced the cell models; and with Pitt professor of electrical and computer engineering Steven Levitan, who devised the ant-like trailing ability.

The researchers write that communication hinges on the interaction between microcapsules exchanging two different types of nanoparticles. The "signaling" cell secretes nanoparticles known as agonists that prompt the second "target" microcapsule to emit nanoparticles known as antagonists.

In one video of the interaction, as the signaling cell emits the agonist nanoparticles, the target cell responds with antagonists that stop the first cell from secreting. Once the signaling cell goes dormant, the target cell likewise stops releasing antagonists -- which makes the signaling cell start up again. The microcapsules get locked into a cycle that equates to an intercellular conversation, a dialogue humans could control by adjusting the capsules' permeability and the quantity of nanoparticles they contain.

Locomotion results as the released nanoparticles alter the surface underneath the microcapsules. The cell's polymer-based walls begin to push on the fluid surrounding the capsule and the fluid pushes back even harder, moving the capsule. At the same time, the nanoparticles from the signaling cell pull it toward the target cells. Groups of capsules begin to form as the signaling cell rolls along, picking up target cells. In practical use, Balazs said, the signaling cell could transport target cells loaded with cargo; the team's next step is to control the order in which target cells are collected and dropped off.

The researchers adjusted the particle output of the signaling cell to create various cell formations. One video clip shows the trailing "ants," wherein the particle secretions of one microcapsule group are delayed until another group passes by and activates it. The newly awakened cluster then follows the chemical residue left behind by the lead group.

A second film depicts a "dragon" formation comprising two cooperating signaling cells (shown as red) leading a large group of targets. Similar to these are "snakes" made up of competing signaling capsules pulling respective lines of target cells.

Friday, April 3, 2009

Virus-built Battery Could Power Cars, Electronic Devices


Angela Belcher holds a display of the virus-built battery she helped engineer. The battery -- the silver-colored disc -- is being used to power an LED. (Credit: Photo by Donna Coveney)

For the first time, MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery.

The new virus-produced batteries have the same energy capacity and power performance as state-of-the-art rechargeable batteries being considered to power plug-in hybrid cars, and they could also be used to power a range of personal electronic devices, said Angela Belcher, the MIT materials scientist who led the research team.


The new batteries, described in the April 2 online edition of Science, could be manufactured with a cheap and environmentally benign process: The synthesis takes place at and below room temperature and requires no harmful organic solvents, and the materials that go into the battery are non-toxic.


In a traditional lithium-ion battery, lithium ions flow between a negatively charged anode, usually graphite, and the positively charged cathode, usually cobalt oxide or lithium iron phosphate. Three years ago, an MIT team led by Belcher reported that it had engineered viruses that could build an anode by coating themselves with cobalt oxide and gold and self-assembling to form a nanowire.


In the latest work, the team focused on building a highly powerful cathode to pair up with the anode, said Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering. Cathodes are more difficult to build than anodes because they must be highly conducting to be a fast electrode, however, most candidate materials for cathodes are highly insulating (non-conductive).


To achieve that, the researchers, including MIT Professor Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.


Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically "wired" to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time.


The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.


The team found that incorporating carbon nanotubes increases the cathode's conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but "we expect them to be able to go much longer," Belcher said.


The prototype is packaged as a typical coin cell battery, but the technology allows for the assembly of very lightweight, flexible and conformable batteries that can take the shape of their container.


Last week, MIT President Susan Hockfield took the prototype battery to a press briefing at the White House where she and U.S. President Barack Obama spoke about the need for federal funding to advance new clean-energy technologies.


Now that the researchers have demonstrated they can wire virus batteries at the nanoscale, they intend to pursue even better batteries using materials with higher voltage and capacitance, such as manganese phosphate and nickel phosphate, said Belcher. Once that next generation is ready, the technology could go into commercial production, she said.


Lead authors of the Science paper are Yun Jung Lee and Hyunjung Yi, graduate students in materials science and engineering. Other authors are Woo-Jae Kim, postdoctoral fellow in chemical engineering; Kisuk Kang, recent MIT PhD recipient in materials science and engineering; and Dong Soo Yun, research engineer in materials science and engineering.


The research was funded by the Army Research Office Institute of the Institute of Collaborative Technologies, and the National Science Foundation through the Materials Research Science and Engineering Centers program.

==================================================================

Journal reference:


  1. Yun Jung Lee, Hyunjung Yi, Woo-Jae Kim, Kisuk Kang, Dong Soo Yun, Michael S. Strano, Gerbrand Ceder, and Angela M. Belcher. Fabricating Genetically Engineered High-Power Lithium Ion Batteries Using Multiple Virus Genes. Science, 2009; DOI: 10.1126/science.1171541

Adapted from materials provided by Massachusetts Institute of Technology
.

If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]