BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Tuesday, June 29, 2010

Gene Leads to Longer Shelf Life for Tomatoes


A Purdue University researcher has found a sort of fountain of youth for tomatoes that extends their shelf life by about a week.
Image
The tomato with increased spermidine (top) 
stays fresh longer than those that do not have 
an increased level of the natural organic 
compound. (Credit: Purdue University 
photo/Avtar Handa)


Avtar Handa, a professor of horticulture, found that adding a yeast gene increases production of a compound that slows aging and delays microbial decay in tomatoes. Handa said the results, published in the early online version of The Plant Journal, likely would transfer to most fruits.

"We can inhibit the aging of plants and extend the shelf life of fruits by an additional week for tomatoes," Handa said. "This is basic fundamental knowledge that can be applied to other fruits."

The organic compound spermidine is a polyamine and is found in all living cells. Polyamines' functions aren't yet fully understood. Handa and Autar Mattoo, a research plant physiologist with the U.S. Department of Agriculture's Agricultural Research Service and collaborator in the research, had shown earlier that polyamines such as spermidine and spermine enhance nutritional and processing quality of tomato fruits.

"At least a few hundred genes are influenced by polyamines, maybe more," Mattoo said. "We see that spermidine is important in reducing aging. It will be interesting to discover what other roles it can have."

Savithri Nambeesan, who was a graduate student in Handa's laboratory, introduced the yeast spermidine synthase gene, which led to increased production of spermidine in the tomatoes. Fully ripe tomatoes from those plants lasted about eight days longer before showing signs of shriveling compared with non-transgenic plants. Decay and rot symptoms associated with fungi were delayed by about three days.

"It increased the quality of the fruit," Handa said. "If a tomato goes to market, people won't buy it if it has started to shrivel. If we can stop that wrinkling, we can extend the market time of the fruit."

Mattoo said the finding could have implications for areas that don't often get fresh fruit.

"Shelf life is a major problem for any produce in the world, especially in countries such as in Southeast Asia and Africa that cannot afford controlled-environment storage," Mattoo said.

Handa said tomato growers and possibly other fruit growers could use the finding soon if they wanted through either transgenic plants or natural breeding methods.

"We can add this gene to the tomatoes or look at natural variation and select the cultivars that already have a high level of this gene's expression," Handa said.

Handa and Mattoo will continue to study polyamines to discover how they control biological functions in fruits.

The US-Israel Binational Agricultural Research and Development Fund, the USDA Initiative for Future Agricultural Food Systems, and the Purdue Research Foundation funded the research.
Enhanced by Zemanta

World First for Quantum Memory Storage


An Australian National University-led team has developed the most efficient quantum memory for light in the world, taking us closer to a future of super-fast computers and communication secured by the laws of physics.
Image
Light passes through the crystal in the quantum memory 
experiment. (Credit: Image courtesy of Australian 
National University)

The team at the ANU Research School of Physics and Engineering used a technique they pioneered to stop and control light from a laser, manipulating electrons in a crystal cooled to a chilly -270 degrees Celcius. The unprecedented efficiency and accuracy of the system allows the delicate quantum nature of the light to be stored, manipulated, and recalled.

"Light entering the crystal is slowed all the way to a stop, where it remains until we let it go again," explains lead researcher Morgan Hedges. "When we do let it go, we get out essentially everything that went in as a three-dimensional hologram, accurate right down to the last photon.

"Because of the inherent uncertainty in quantum mechanics, some of the information in this light will be lost the moment it is measured, making it a read-once hologram. Quantum mechanics guarantees this information can only be read once, making it perfect for secure communication."

The same efficient and accurate qualities make the memory a leading prospect for quantum computing, which has the potential to be many times faster and more powerful than contemporary computing.

In addition, the researchers say the light storage will allow tests of fundamental physics, such as how the bizarre phenomenon of quantum entanglement interacts with of the theory of relativity.

"We could entangle the quantum state of two memories, that is, two crystals," says team leader Dr Matthew Sellars. "According to quantum mechanics, reading out one memory will instantly alter what is stored in the other, no matter how large the distance between them. According to relativity, the way time passes for one memory is affected by how it moves. With a good quantum memory, an experiment to measure how these fundamental effects interact could be as simple as putting one crystal in the back of my car and going for a drive."

Dr Sellars' team has previously performed an experiment that 'stopped' light in a crystal for over a second, more than 1,000 times longer than was previously possible. He said that the team is now bringing together systems that combine the high efficiency with storage times of hours.

The research team includes Dr Jevon Longdell from the University of Otago and Dr Yongmin Li from Shanxi University. The findings are published in Nature.
Enhanced by Zemanta

Monday, June 28, 2010

NASA infrared imagery shows well-defined eye in Category 5 Celia



Celia has exploded into a monster hurricane in the Eastern Pacific, and is now a Category 5 storm over open waters. NASA's Aqua satellite captured an infrared image (that shows temperature) of Celia's clouds and clearly shows an eye in the storm. Celia's eye appears well-defined and is between 15-20 nautical miles wide.
Image
AIRS noticed that Celia has a very large area of them where clouds are so very high in the troposphere (to the tropopause) that they're as cold as -94 to -112 (-75 to -80 Celsius) Fahrenheit! Credit: NASA JPL, Ed Olsen


The Atmospheric Infrared Sounder, or AIRS instrument provides infrared imagery of cloud tops and sea surface temperatures, two things that are important to tropical cyclones. High, cold cloud tops indicate strong thunderstorms around a tropical cyclone's center. AIRS imagery on June 25 noticed that Celia had a very large area of high, icy cold clouds that are so very high in the troposphere (to the tropopause) that they're as cold as -94 to -112 (-75 to -80 Celsius) Fahrenheit! The National Hurricane Center called Celia a "very impressive hurricane" this morning.

Warm sea surface temperatures are also critical for a tropical cyclone's development, and AIRS infrared imagery is able to read those temperatures from space, too. AIRS imagery taken on Friday, July 25 at 9:05 UTC (5:05 a.m. EDT) showed that the sea surface temperatures around Celia were over the 80 degree Fahrenheit threshold needed to continue powering tropical cyclones. As Celia continues to move west-northwestward, however, those waters will become cooler and they are expected to weaken Celia.
Image
The Moderate Imaging Spectroradiometer (MODIS) instrument on NASA's Aqua satellite captured this visible image of Hurricane Celia on June 24 at 20:55 UTC (4:55 p.m. EDT). Credit: NASA Goddard/MODIS Rapid Response Team


At 5 a.m. EDT (2 a.m. PDT) on Friday, June 25, powerful Category Five Hurricane Celia was packing maximum sustained winds near 160 mph (260 km/hr). Hurricane force winds extend outward up to 50 miles (85 km) from the center...and tropical storm force winds extend outward up to 140 miles (220 km). Celia's center was located about 805 nautical miles southwest of the southern tip of Baja California, near 13.4 North and 117.0 West. Celia's minimum central pressure is 926 millibars, and she is moving west-northwest near 13 mph (20 km/hr).

The cooler waters that lie in Celia's path are expected to quickly help weaken the storm. The National Hurricane Center expects Celia to be downgraded to tropical storm strength late on Sunday, June 27.

Enhanced by Zemanta

Sunday, June 27, 2010

Computer Program Detects Depression in Bloggers' Texts


Researchers at Ben-Gurion University of the Negev (BGU) developed a software program that can detect depression in blogs and online texts. The software is capable of identifying language that can indicate the writer's psychological state, which could serve as a screening tool.

The software, developed by a team headed by Associate Professor Yair Neuman in BGU's Department of Education, was used to scan more than 300,000 English language blogs that were posted to mental health Web sites. The program identified what it perceived to be the 100 "most depressed" and 100 "least depressed" bloggers. A panel of four clinical psychologists reviewed the samples, and concluded that there was a 78 percent correlation between the computer's findings and the panel's.

Professor Yair Neuman will be presenting his BGU team's work at the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agency Technology in Toronto, Canada, August 31 -- Sept. 3, 2010. Prof. Neuman's findings will also be published in the conference's proceedings.

"The software program was designed to find depressive content hidden in language that did not mention the obvious terms like "depression" or suicide," explains Prof. Neuman. "A psychologist knows how to spot various emotional states through intuition. Here, we have a program that does this methodically through the innovative use of 'web intelligence.'"

For example, the program spots words that express various emotions, like colors that the writer employs to metaphorically describe certain situations. Words like "black" combined with other terms that describe symptoms of depression, such as sleep deprivation or loneliness, will be recognized by the software as "depressive" texts.

Originally conducted for academic purposes, the findings could potentially be used to screen for would-be suicides.

The software provides a screening process that raises an individual's awareness of his or her condition, enables mental health workers to identify individuals in need of treatment, and can then recommend they seek professional help. Because, "no one can actually replace excellent human judgment," says Neuman.

In the United States, there is a big problem of undiagnosed people suffering from depression. The usual screening process is an online questionnaire, which is a self-selective process. If a person is completing a survey, he already suspects a problem. With this software, it is possible to analyze proactively. If the blogger agrees, he will know whether or not he needs to seek professional counseling.
Enhanced by Zemanta

Saturday, June 26, 2010

Cosmic Clocks Could Help Uncover Ripples in Space-Time


An international team of scientists have developed a promising new technique which could turn pulsars -- superb natural cosmic clocks -- into even more accurate time-keepers.
Pulsars appear to be able to switch between two 
states which differ in the current of charged 
particles flowing from the surface into outer space. 
This change in current results in a change of 
slow-down in their rotation rate, such that the 
pulsar 'brakes' faster (upper panel) when the 
currents are large and 'brakes' less fast when the 
currents are weak (lower panel). These currents 
also result in a change in the shape of the beam 
emittedby the pulsar, and hence in the shape of the 
pulse, or tick, as the beam crosses a radio telescope. 
(Credit: Michael Kramer, University of Manchester)

This important advance, led by scientists at The University of Manchester and appearing June 24 in the journal Science Express, could improve the search for gravitational waves and help studies into the origins of the universe.

The direct discovery of gravitational waves, which pass over cosmic clocks and cause them to change, could allow scientists to study violent events such as the merging of super-massive black holes and help understand the universe shortly after its formation in the Big Bang.

The scientists made their breakthrough using decades-long observations from the 76-m Lovell radio telescope at The University of Manchester's Jodrell Bank Observatory to track the radio signals of extreme stars known as pulsars.

Pulsars are spinning collapsed stars which have been studied in great detail since their discovery in 1967. The extremely stable rotation of these cosmic fly-wheels has previously led to the discovery of the first planets orbiting other stars and provided stringent tests for theories of gravity that shape the Universe.

However, this rotational stability is not perfect and, until now, slight irregularities in their spin have significantly reduced their usefulness as precision tools.

The team, led by the University of Manchester's Professor Andrew Lyne, has used observations from the Lovell telescope to explain these variations and to demonstrate a method by which they may be corrected.

Professor Lyne explains: "Mankind's best clocks all need corrections, perhaps for the effects of changing temperature, atmospheric pressure, humidity or local magnetic field. Here, we have found a potential means of correcting an astrophysical clock."

The rate at which all pulsars spin is known to be decreasing very slowly. What the team has found is that the deviations arise because there are actually two spin-down rates and not one, and that the pulsar switches between them, abruptly and rather unpredictably.

These changes are associated with a change in the shape of the pulse, or tick, emitted by the pulsar. Because of this, precision measurements of the pulse shape at any particular time indicate exactly what the slowdown rate is and allow the calculation of a "correction." This significantly improves their properties as clocks.

The results give a completely new insight into the extreme conditions near neutron stars and also offer the potential for improving already very precise experiments in gravitation.

It is hoped that this new understanding of pulsar spin-down will improve the chances that the fastest spinning pulsars will be used to make the first direct detection of ripples, known as gravitational waves, in the fabric of space-time.

The University of Manchester team worked closely on the project with Dr George Hobbs of the Australia Telescope National Facility, Professor Michael Kramer of the Max Planck Institute for Radioastronomy and Professor Ingrid Stairs of the University of British Columbia.

The research was funded by the Science and Technology Facilities Council. Their Director of Science, Professor John Womersley, said: "Astronomy is unlike most other sciences, as we cannot go out and measure directly the properties of stars and galaxies.

"They have to be calculated based on our understanding of how the Universe works -- which means that something as significant as being able to use pulsars as cosmic clocks, a new standard for time measurement, will have far-reaching consequences for advancing science and our understanding of the Universe."

Many observatories around the world are attempting to use pulsars in order to detect the gravitational waves that are expected to be created by super-massive binary black holes in the Universe.

With the new technique, the scientists may be able to reveal the gravitational wave signals that are currently hidden because of the irregularities in the pulsar rotation.

Head of the Pulsar Group at The University of Manchester Dr Ben Stappers said: "These exciting results were only possible because of the quality and duration of the unique Lovell Telescope pulsar timing database."
Enhanced by Zemanta

Thursday, June 24, 2010

Neuroscientists Can Predict Your Behavior


In a study with implications for the advertising industry and public health organizations, UCLA neuroscientists have shown they can use brain scanning to predict whether people will use sunscreen during a one-week period even better than the people themselves can.
Precuneus and medial prefrontal cortex highlighted 
in brain. In this study, activity in the medial prefrontal 
region helped researchers predict which study participants 
would increase their sunscreen use, even better than 
the participants themselves could predict. 
(Credit: Image courtesy of UCLA)

"There is a very long history within psychology of people not being very good judges of what they will actually do in a future situation," said the study's senior author, Matthew Lieberman, a UCLA professor of psychology and of psychiatry and biobehavioral sciences. "Many people 'decide' to do things but then don't do them."

The new study by Lieberman and lead author Emily Falk, who earned her doctorate in psychology from UCLA this month, shows that increased activity in a brain region called the medial prefrontal cortex among individuals viewing and listening to public service announcement slides on the importance of using sunscreen strongly indicated that these people were more likely to increase their use of sunscreen the following week, even beyond the people's own expectations.

"From this region of the brain, we can predict for about three-quarters of the people whether they will increase their use of sunscreen beyond what they say they will do," Lieberman said. "If you just go by what people say they will do, you get fewer than half of the people accurately predicted, and using this brain region, we could do significantly better."

"While most people's self-reports are not very accurate, they do not realize their self-reports are wrong so often in predicting future behavior," Falk said. "It is surprising to find out that some technique might be able to predict my own behavior better than I can. Yet the brain seems to reveal something important that we may not even realize."

The study, the first persuasion study in neuroscience to predict behavior change, appears June 23 in the Journal of Neuroscience.

For the study, Falk, Lieberman and their collaborators sought people who did not use sunscreen every day. The study group consisted of 20 participants, mostly UCLA students, 10 female and 10 male. The participants had their brains scanned using functional magnetic resonance imaging (fMRI) at UCLA's Ahmanson-Lovelace Brain Mapping Center as they saw and heard a series of public service announcements. They were also asked about their intentions to use sunscreen over the next week and their attitudes about sunscreen.

The participants were then contacted a week later and asked on how many days during the week they had used sunscreen.

Lieberman and Falk focused on part of the brain's medial prefrontal cortex, which is located in the front of the brain, between the eyebrows. This brain region is associated with self-reflection -- thinking about what we like and do not like and our motivations and desires.

"It is the one region of the prefrontal cortex that we know is disproportionately larger in humans than in other primates," Lieberman said. "This region is associated with self-awareness and seems to be critical for thinking about yourself and thinking about your preferences and values."

The researchers developed a model based on 10 people and tested it on the next 10. They shuffled the 20 people in different ways to test the model. There are more than 180,000 ways to divide the 20 people into groups, Falk said.

"We ran a simulation of the 180,000 combinations, developed our model on the first 10 subjects on each of the 180,000 simulations, and tested it on the second 10," Falk said. "We saw a very reliable relationship, where for the vast majority of the 180,000 ways to divide the group up, this one region of the brain, the medial prefrontal cortex, does a very good job of predicting sunscreen use in the second group."

This finding could be relevant to many public health organizations, as well as the advertising industry, Lieberman and Falk said.

"For advertisers, there may be a lot more that is knowable than is known, and this is a data-driven method for knowing more about how to create persuasive messages," said Lieberman, one of the founders of social cognitive neuroscience.

Neural focus groups

While 19th-century department store pioneer John Wanamaker (quoted at the beginning of this release) advertised effectively for his stores in newspapers, he still said he was wasting half his advertising budget -- only he didn't know which half.

"We're learning something about which half," Lieberman said.

While advertising agencies often use focus groups to test commercials and movie trailers, in the future they and public health officials perhaps should add "neural focus groups" to test which messages will be effective while monitoring the brain activity of their subjects.

"A problem with standard focus groups," Falk said, "is that people are lousy at reporting what they will actually do. We have not had much to supplement that approach, but in the future it may be possible to create what we are calling 'neural focus groups.' Instead of talking with people about what they think they will do, a public health or advertising agency can study their brains and learn what they are really likely to do and how an advertisement would be likely to affect millions of other people as well."

"Given that there are emerging technologies that are relatively portable and approximate some of what fMRI can do at a fraction of the cost, looking to the brain to shape persuasive messages could become a reality," Lieberman said. "But we're just at the beginning. This is one of the first papers on anything like this. There will be a series of papers over the next 10 years or more that will tell us what factors are driving neural responses."

"We hope to build a sophisticated model of persuasion that may incorporate multiple brain regions," said Falk, who studies the neural basis of persuasion and attitude change. She has been hired by the University of Michigan-Ann Arbor as an assistant professor of communication studies and psychology and a member of the university's Institute for Social Research, starting in September.

While some people have emphasized reasoning and emotion as key areas on which to base advertising campaigns, a key question may be whether messages and advertisements can be produced that "make people feel, 'This is about me and is relevant to my preferences and motivations,'" Falk said. "Perhaps effective messages reinforce our values, our self-identity, what motivates us. We will learn much more as we continue this line of research over the years."

Neuroscientists will learn whether they can predict behavior better and are likely to obtain a more nuanced understanding of the roles played by different parts of brain regions, said Falk, who this March received UCLA's Charles E. and Sue K. Young Award for outstanding research and teaching. She is interested in how to make more effective health and other public service messages aimed at young adults.

"There is still much we do not know about how to get people to make healthier choices," Falk said. "We hope to learn much more about what makes messages more or less persuasive."

Different brain regions may be important for persuading people to tell or e-mail their friends about a health message, product or service; Lieberman and Falk are studying this issue of "creating buzz" as well.

However, the implications of the research go far beyond advertising, Lieberman said.

"There are many applications beyond how you make a good 30-second commercial," he said, "including how teachers can communicate better so their students won't tune out or how doctors can convince patients to stick to their instructions. We all use persuasion in some form or another every day."

Beware of hucksters

Some people are already offering "neuro-marketing," purporting to help businesses sell their products and help candidates run their advertising campaigns, Lieberman noted. They may, for example, recommend what colors and sounds to use in commercials. Is this effective, or are they claiming expertise they do not possess?

"In general, they are taking simple views of how different parts of the brain work and are saying it is important to turn a particular part of the brain on when advertising, and therefore you should do more of this or that," Lieberman said. "For instance, they will say you want to activate the amygdala because that is the brain's emotion center. Typically they are not looking at the relationship between what happens in the brain when someone is exposed to an advertisement and what actually are the outcomes that you care about. For example, do people change their behavior? Does someone spread the message to others? Instead, they are giving generic analysis, and my guess is that the vast majority of the advice they are giving is not accurate.

"To really understand the relationship between the brain's responses to brands and persuasive materials and desirable outcomes, you actually have to measure the outcomes that are desirable and not just say what should work," he said. "There are many folks claiming to be neuroscientists who have read a little introductory neuroscience, and that is not enough expertise. It's almost infinitely more complicated than that."

Co-authors on the Journal of Neuroscience paper are Elliot Berkman, a UCLA graduate student of psychology in Lieberman's laboratory who will be an assistant professor of psychology at the University of Oregon this fall; Traci Mann, a professor of psychology at the University of Minnesota-Minneapolis who was formerly on UCLA's faculty; and Brittany Harrison, a former UCLA undergraduate student.
Enhanced by Zemanta

Wednesday, June 23, 2010

New A/C System Could Slash Energy Bills


Ah, the cool, refreshing feel of air conditioning on a sweltering summer day.
Image
NREL senior engineer Eric Kozubal examines a prototype air flow channel of the DEVap air conditioner, which he co-invented. DEVap, which stands for desiccant-enhanced evaporative air conditioner, is a novel concept that uses membrane technology to combine the efficiency of evaporative cooling and the drying potential of liquid desiccant salt solutions. The graph superimposed on the photo shows shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. (Credit: Pat Corkery)

Ugh, the discomfort when those energy bills in July, August and September come due -- $200, $400, $600 or more.

Feel miserable, or dig deep into your wallet -- not much of a choice for the 250 million Americans who live in climates where heat, humidity or both are a Catch-22 for three to 12 months a year.

A soothing solution may be on its way, thanks to a melding of technologies in filters, coolers and drying agents.

The U.S. Department of Energy's National Renewable Energy Laboratory has invented a new air conditioning process with the potential of using 50 percent to 90 percent less energy than today's top-of-the-line units. It uses membranes, evaporative cooling and liquid desiccants in a way that has never been done before in the centuries-old science of removing heat from the air.

"The idea is to revolutionize cooling, while removing millions of metric tons of carbon from the air," NREL mechanical engineer Eric Kozubal, co-inventor of the Desiccant-Enhanced eVaporative air conditioner (DEVap), said.

"We'd been working with membranes, evaporative coolers and desiccants. We saw an opportunity to combine them into a single device for a product with unique capabilities."

Hot and Humid Climates are Tricky

Evaporative coolers are a lower-cost alternative to A/C in dry climates that don't get too hot or humid -- say, Denver, but not Phoenix or Miami. Water flows over a mesh, and a fan blows air through the wet mesh to create humid, cool air.

In humid climes, adding water to the air creates a hot and sticky building environment. Furthermore, the air cannot absorb enough water to become cold.

In Phoenix or Tucson, the evaporative cooler can bring down the temperature, but not enough to make it pleasant inside on a 100-degree day or during the four to eight week moist period known as monsoon season. The cooling bumps up against the wet bulb temperature, the lowest temperature to which air can be cooled by evaporating without changing the pressure. The wet bulb temperature could be 75 or 80 degrees on a mid-summer Tucson day. Typically, evaporative coolers only can bring the temperatures about 85 percent of the way to the wet bulb level.

So, for most of the country, refrigeration-based air conditioning is the preferred way of keeping cool.

Cooling Requires Temperature Drop and Less Moisture

Cooling comes in two forms -- sensible cooling, which is a temperature drop, and latent cooling, which comes from pulling the moisture out of the air.

One intriguing product already on the market in arid, temperate climates is the Coolerado cooler. It differs from a typical evaporative cooler by never increasing the moisture content of the supply air. It provides cool air through indirect evaporative cooling. Indirect evaporative systems use a purge air stream that removes heat from the product or supply air stream that is then directed into a building.

That way, the Coolerado can cool the air all the way to the wet-bulb temperature.

"It's a big improvement on evaporative cooling because it doesn't add moisture and still gives you cold air," Kozubal said. However, in a humid climate, it still does not provide cold air or humidity control.

DEVap: Liquid Desiccants, Permeable Membranes

The DEVap solves that problem. It relies on the desiccants' capacity to create dry air using heat and evaporative coolers' capacity to take dry air and make cold air.

"By no means is the concept novel, the idea of combining the two," Kozubal said. "But no one has been able to come up with a practical and cost-effective way to do it."

HVAC engineers have known for decades the value of desiccants to air conditioning. In fact, one of the pioneers of early A/C, Willis Haviland Carrier, knew of its potential, but opted to go the refrigeration route.

Most people know of desiccants as the pebble-sized handfuls that come with new shoes to keep them dry.

The kind NREL uses are syrupy liquids -- highly concentrated aqueous salt solutions of lithium chloride or calcium chloride. They have a high affinity for water vapor, and can thus create very dry air.

Because of the complexity of desiccant cooling systems, they have traditionally only been used in industrial drying processes. Inventing a device simple enough for easy installation and maintenance is what has impaired desiccant cooling from entering into commercial and residential cooling markets.

To solve that problem, the NREL device uses thin membranes that simplify the process of integrating air flow, desiccants, and evaporative cooling. These result in an air conditioning system that provides superior comfort and humidity control.

The membranes in the DEVap A/C are hydrophobic, which means water tends to bead up rather than soak through the membranes. Imagine rain falling on a freshly waxed car. That property allows the membranes to control the liquid flows within the cooling core. "It's that property that keeps the water and the desiccant separated from the air stream," Kozubal said.

"We bring the water and liquid desiccant into DEVap's heat-mass exchanger core," Kozubal said. "The desiccant and evaporative cooling effect work together to create cold-dry air."

The air is cooled and dried from a hot-humid condition to a cold and dry condition all in one step. This all happens in a fraction of a second as air flows through the DEVap air conditioner. The result is an air conditioner that controls both thermal and humidity loads.

DEVap helps the environment in many ways. DEVap uses 50 percent to 90 percent less energy than top-of-the-line refrigeration-based air conditioning.

Because DEVap uses salt solutions rather than refrigerants, there are no harmful chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) to worry about. A pound of CFC or HCFC in refrigerant-based A/Cs contributes as much to global warming as 2,000 pounds of carbon dioxide. A typical residential size A/C has as much as 13 pounds of these refrigerants. The release of this much refrigerant is equivalent to burning more than 1,300 gallons of gasoline, or driving over 60,000 miles in a 2010 Toyota Prius. That's based on the Environmental Protection Agency's fuel efficiency rating for the 2010 Toyota Prius and on the standard of 19.5 pounds of carbon dioxide for every gallon of gasoline burned.

Traditional air conditioners use a lot of electricity to run the refrigeration cycle, but DEVap replaces that refrigeration cycle with an absorption cycle that is thermally activated. It can be powered by natural gas or solar energy and uses very little electricity.

This means that DEVap could become the most energy efficient way to cool your house whether you live in Phoenix, New York, or Houston.

NREL has patented the DEVap concept, and Kozubal expects that over the next couple of years he will be working on making the device smaller and simpler and perfecting the heat transfer to make DEVap more cost effective.

Eventually, NREL will license the technology to industry, "We're never going to be in the air conditioner manufacturing business," said Ron Judkoff, Principle Program Manager for Building Energy Research at NREL. "But we'd like to work with manufacturers to bring DEVap to market and create a more efficient and environmentally benign air conditioning product."

Tuesday, June 22, 2010

Battery Power Capacity Boost from Nanotubes?


Batteries might gain a boost in power capacity as a result of a new finding from researchers at MIT. They found that using carbon nanotubes for one of the battery's electrodes produced a significant increase -- up to tenfold -- in the amount of power it could deliver from a given weight of material, compared to a conventional lithium-ion battery. Such electrodes might find applications in small portable devices, and with further research might also lead to improved batteries for larger, more power-hungry applications.

Image
From left, students Betar Gallant and Seung Woo 
Lee and professors Yang Shao-Horn and Paula 
Hammond, in one of the labs where they did 
research on the use of carbon nanotubes 
in lithium batteries. (Credit: Image courtesy of MIT)

To produce the powerful new electrode material, the team used a layer-by-layer fabrication method, in which a base material is alternately dipped in solutions containing carbon nanotubes that have been treated with simple organic compounds that give them either a positive or negative net charge. When these layers are alternated on a surface, they bond tightly together because of the complementary charges, making a stable and durable film.

The findings, by a team led by Associate Professor of Mechanical Engineering and Materials Science and Engineering Yang Shao-Horn, in collaboration with Bayer Chair Professor of Chemical Engineering Paula Hammond, are reported in a paper published June 20 in the journal Nature Nanotechnology. The lead authors are chemical engineering student Seung Woo Lee PhD '10 and postdoctoral researcher Naoaki Yabuuchi.

Batteries, such as the lithium-ion batteries widely used in portable electronics, are made up of three basic components: two electrodes (called the anode, or negative electrode, and the cathode, or positive electrode) separated by an electrolyte, an electrically conductive material through which charged particles, or ions, can move easily. When these batteries are in use, positively charged lithium ions travel across the electrolyte to the cathode, producing an electric current; when they are recharged, an external current causes these ions to move the opposite way, so they become embedded in the spaces in the porous material of the anode.

In the new battery electrode, carbon nanotubes -- a form of pure carbon in which sheets of carbon atoms are rolled up into tiny tubes -- "self-assemble" into a tightly bound structure that is porous at the nanometer scale (billionths of a meter). In addition, the carbon nanotubes have many oxygen groups on their surfaces, which can store a large number of lithium ions; this enables carbon nanotubes for the first time to serve as the positive electrode in lithium batteries, instead of just the negative electrode.

This "electrostatic self-assembly" process is important, Hammond explains, because ordinarily carbon nanotubes on a surface tend to clump together in bundles, leaving fewer exposed surfaces to undergo reactions. By incorporating organic molecules on the nanotubes, they assemble in a way that "has a high degree of porosity while having a great number of nanotubes present," she says.

Lithium batteries with the new material demonstrate some of the advantages of both capacitors, which can produce very high power outputs in short bursts, and lithium batteries, which can provide lower power steadily for long periods, Lee says. The energy output for a given weight of this new electrode material was shown to be five times greater than for conventional capacitors, and the total power delivery rate was 10 times that of lithium-ion batteries, the team says. This performance can be attributed to good conduction of ions and electrons in the electrode, and efficient lithium storage on the surface of the nanotubes.

In addition to their high power output, the carbon nanotube electrodes showed very good stability over time. After 1,000 cycles of charging and discharging a test battery, there was no detectable change in the material's performance.

The electrodes the team produced had thicknesses up to a few microns, and the improvements in energy delivery only were seen at high-power output levels. In future work, the team aims to produce thicker electrodes and extend the improved performance to low-power outputs as well, they say. In its present form, the material might have applications for small, portable electronic devices, says Shao-Horn, but if the reported high power capability were demonstrated in a much thicker form -- with thicknesses of hundreds of microns rather than just a few -- it might eventually be suitable for other applications such as hybrid cars.

While the electrode material was produced by alternately dipping a substrate into two different solutions -- a relatively time-consuming process -- Hammond suggests that the process could be modified by instead spraying the alternate layers onto a moving ribbon of material, a technique now being developed in her lab. This could eventually open the possibility of a continuous manufacturing process that could be scaled up to high volumes for commercial production, and could also be used to produce thicker electrodes with a greater power capacity. "There isn't a real limit" on the potential thickness, Hammond says. "The only limit is the time it takes to make the layers," and the spraying technique can be up to 100 times faster than dipping, she says.

Lee says that while carbon nanotubes have been produced in limited quantities so far, a number of companies are currently gearing up for mass production of the material, which could help to make it a viable material for large-scale battery manufacturing.

Monday, June 21, 2010

Gene Therapy Reverses Type 1 Diabetes in Mice


Researchers have developed an experimental cure for Type 1 diabetes, a disease that affects about one in every 400 to 600 children and adolescents.

Image
In a new study using gene therapy in mice, researchers 
say they have developed an experimental cure for 
Type 1 diabetes. (Credit: iStockphoto)

Results of the research in a mouse model of Type 1 diabetes are being presented at The Endocrine Society's 92nd Annual Meeting in San Diego.

Using gene therapy, the team from Baylor College of Medicine in Houston tried to counter the two defects that cause Type 1 diabetes: autoimmune attack and destruction of the insulin-producing beta cells. They used nonobese diabetic mice, which spontaneously develop diabetes due to autoimmunity, just as humans do with Type 1 diabetes.

"A single treatment cured about 50 percent of the diabetic mice, restoring their blood sugar to normal so that they no longer need insulin injections," said study co-author Lawrence Chan, MD, DSc, chief of Baylor's diabetes, endocrinology and metabolism division.

Type 1 diabetes occurs when the body's immune system attacks and destroys the beta cells in the pancreas, the insulin "factory" of the body. The resulting near-complete deficiency of insulin -- the hormone that controls blood sugar -- leads to a buildup of high blood sugar and thus diabetes.

In past studies of their original gene therapy, Chan's group was able to stimulate new formation of beta cells in the liver and restore insulin production and normal blood sugar levels in more than 100 mice with chemically induced diabetes. However, in nonobese diabetic mice the treatment failed to reverse Type 1 diabetes because the mouse's immune system killed the newly formed beta cells, he said.

In this research, which was funded by the National Institute of Diabetes, Kidney and Digestive Diseases, Chan said they "added to the original gene therapy approach a protective gene that shields the newly formed beta cells from autoimmune attack." The added gene was for interleukin-10, an important regulator of the immune system. Past studies showed that interleukin-10 can prevent diabetes development in mice but cannot reverse the disease once it has developed because of the lack of beta cells.

However, when the researchers combined the gene therapy with interleukin-10 into a single intravenous injection, the treatment showed a complete reversal of diabetes in half of the mice during more than 20 months' follow-up. Although the therapy did not reverse autoimmunity throughout the body, it protected the new beta cells from the local destructive effect of autoimmunity, Chan explained.

"We developed a protective 'moat' around the new beta cells," he said. "We are now developing other strategies to try to fortify the newly formed beta cells and give them better weapons in addition to the moat, in order to increase the treatment's cure rate."

Why the gene therapy did not work in all the mice is unclear. However, Chan said the treated mice that did not have improvements in their blood sugar did gain weight and lived a little longer than untreated mice.
Enhanced by Zemanta

Fly Cells Flock Together, Follow the Light


Scientists at Johns Hopkins report using a laser beam to activate a protein that makes a cluster of fruit fly cells act like a school of fish turning in social unison, following the lead of the one stimulated with light.
Image
Still image from a video clip showing a photo-activatable 
form of Rac. (Credit: Image courtesy of Denise Montell Lab)

The study of this unexpected cell movement, reported May 16 in Nature Cell Biology,holds potential importance for understanding embryonic development, wound healing and tumor metastasis -- the process by which tumor cells acquire the ability to invade surrounding tissues and migrate long distances to colonize lymph nodes, bones and other distant organs.

The research dramatically demonstrates, the researchers say, the collective direction-sensing behavior of live cells in intact tissue, and a means of controlling protein behavior in a living organism by shining a focused beam of light precisely on the parts of cells where they want the protein to be active.

"Our little system in the fruit fly is an elegant example of cells behaving socially in their natural environment -- surrounded by other cells," says Denise Montell, Ph.D., a professor of biological chemistry and director of the Center for Cell Dynamics at the Johns Hopkins University School of Medicine. "You can't capture this behavior if you look at individual cells in a culture dish."

The "social" migrating behavior among a cluster of cells in the fly ovary surprised the research team, which was using a new laser light tool to manipulate protein activity.

"People tend to think of cancer as single cells breaking off from the tumor and migrating away," Montell says, but it's likely that this collective form of movement is important, at one phase or another, in the spread of tumors."

A better understanding of how and why cells move can facilitate the development of new treatments not only for cancer but other disorders characterized by aberrant cell behavior.

Developed in the laboratory of Klaus Hahn, Ph.D., Thurman Professor of Pharmacology at the University of North Carolina at Chapel Hill, the light-activation technique previously had been shown to control cell movement in cultured mammalian cells. The Hopkins-led study provides proof of principle that a non-toxic light alone can activate a protein in live organisms, allowing researchers to safely control when and where cells move.

The Hopkins team conducted their study on a cluster of six so-called border cells in the fly ovary, cells the team has long studied and which are important to the fly because if they don't migrate, females are sterile. In addition they serve as a model for understanding the mechanisms that control collective cell movements in general, which occur during normal embryonic development, wound healing and in tumor metastasis.

First, they genetically altered the border cells so that they were lacking the ability to respond to naturally occurring chemical attractants that normally control their movement. Then they used a fly protein known as Rac, which was fused to a photoactivatable (PA) plant protein, a creation engineered by Hahn's lab. The PA-Rac, which remains inert in the dark, reacts to light because the plant protein changes shape and allows Rac to become active, causing the cells to move.

Because a beam of laser light can be much smaller than a cell, the team was able to activate Rac not only in one single cell, but also in one part of one cell, Montell says: "The other cool thing is this is reversible, so as soon as you take the light away, the PA-Rac wraps back up and turns itself off."

Following up on previous research, the team wanted to find out if Rac would be sufficient to set the direction of movement of cells within live tissue.

When they shined a laser beam on various individual cells, the entire cluster responded by moving in directions that it wouldn't under normal conditions: sideways, for instance, and even in reverse. In short, they followed the light.

"When we activated Rac in even one part of one of these cells -- and not in the cell that would be the leader if all was normal -- it was as if all the other cells said, Aha! You've got more Rac activity so we're heading your way," Montell says. "It's amazing to me that somehow the cells sense each others' levels of Rac activity and collectively decide which way to go.

Authors on the paper, in addition to Montell and Hahn, are Xiaobo Wang from Johns Hopkins and Yi Wu from UNC.

Funding was provided by the National Institutes of Health and the Cell Migration Consortium.

A video clip of a photo-activatable form of Rac is available at: http://www.icm.com/montell/MovieS5%28RacQ61Lforwardandrev%29.mov

Enhanced by Zemanta