BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Big Bang. Show all posts
Showing posts with label Big Bang. Show all posts

Thursday, November 25, 2010

Early Universe Was a Liquid, Nuclei Collisions at the Large Hadron Collider Show


In an experiment to collide lead nuclei together at CERN's Large Hadron Collider physicists from the ALICE detector team including researchers from the University of Birmingham have discovered that the very early Universe was not only very hot and dense but behaved like a hot liquid.
Another Real lead-lead collision in ALICE inner 
detector. (Credit: CERN)

By accelerating and smashing together lead nuclei at the highest possible energies, the ALICE experiment has generated incredibly hot and dense sub-atomic fireballs, recreating the conditions that existed in the first few microseconds after the Big Bang. Scientists claim that these mini big bangs create temperatures of over ten trillion degrees.

At these temperatures normal matter is expected to melt into an exotic, primordial 'soup' known as quark-gluon plasma. These first results from lead collisions have already ruled out a number of theoretical physics models, including ones predicting that the quark-gluon plasma created at these energies would behave like a gas.

Although previous research in the USA at lower energies, indicated that the hot fire balls produced in nuclei collisions behaved like a liquid, many expected the quark-gluon plasma to behave like a gas at these much higher energies.

Scientists from the University of Birmingham's School of Physics and Astronomy are playing a key role in this new phase of the LHC's programme which comes after seven months of successfully colliding protons at high energies. Dr David Evans, from the University of Birmingham's School of Physics and Astronomy, and UK lead investigator at ALICE experiment, said: "Although it is very early days we are already learning more about the early Universe."

He continues: "These first results would seem to suggest that the Universe would have behaved like a super-hot liquid immediately after the Big Bang."

The team has also discovered that more sub-atomic particles are produced in these head-on collisions than some theoretical models previously suggested. The fireballs resulting from the collision only lasts a short time, but when the 'soup' cools down, the researchers are able to see thousands of particles radiating out from the fireball. It is in this debris that they are able to draw conclusions about the soup's behaviour.

Two papers detailing this research have been submitted for publication and posted on: http://xxx.lanl.gov/abs/1011.3914| and http://xxx.lanl.gov/abs/1011.3916|.

This research is funded by the Science and Technology Facilities Council (STFC).

Thursday, September 9, 2010

Big Bang Was Followed by Chaos, Mathematical Analysis Shows


Seven years ago Northwestern University physicist Adilson E. Motter conjectured that the expansion of the universe at the time of the big bang was highly chaotic. Now he and a colleague have proven it using rigorous mathematical arguments.
Time line of the Universe. (Credit: NASA)

The study, published by the journal Communications in Mathematical Physics, reports not only that chaos is absolute but also the mathematical tools that can be used to detect it. When applied to the most accepted model for the evolution of the universe, these tools demonstrate that the early universe was chaotic.

Certain things are absolute. The speed of light, for example, is the same with respect to any observer in the empty space. Others are relative. Think of the pitch of a siren on an ambulance, which goes from high to low as it passes the observer. A longstanding problem in physics has been to determine whether chaos -- the phenomenon by which tiny events lead to very large changes in the time evolution of a system, such as the universe -- is absolute or relative in systems governed by general relativity, where the time itself is relative.

A concrete aspect of this conundrum concerns one's ability to determine unambiguously whether the universe as a whole has ever behaved chaotically. If chaos is relative, as suggested by some previous studies, this question simply cannot be answered because different observers, moving with respect to each other, could reach opposite conclusions based on the ticks of their own clocks.

"A competing interpretation has been that chaos could be a property of the observer rather than a property of the system being observed," said Motter, an author of the paper and an assistant professor of physics and astronomy at Northwestern's Weinberg College of Arts and Sciences. "Our study shows that different physical observers will necessarily agree on the chaotic nature of the system."

The work has direct implications for cosmology and shows in particular that the erratic changes between red- and blue-shift directions in the early universe were in fact chaotic.

Motter worked with colleague Katrin Gelfert, a mathematician from the Federal University of Rio de Janeiro, Brazil, and a former visiting faculty member at Northwestern, who says that the mathematical aspects of the problem are inspiring and likely to lead to other mathematical developments.

An important open question in cosmology is to explain why distant parts of the visible universe -- including those that are too distant to have ever interacted with each other -- are so similar.

"One might suggest 'Because the large-scale universe was created uniform,'" Motter said, "but this is not the type of answer physicists would take for granted."

Fifty years ago, physicists believed that the true answer could be in what happened a fraction of a second after the big bang. Though the initial studies failed to show that an arbitrary initial state of the universe would eventually converge to its current form, researchers found something potentially even more interesting: the possibility that the universe as a whole was born inherently chaotic.

The present-day universe is expanding and does so in all directions, Motter explained, leading to red shift of distant light sources in all three dimensions -- the optical analog of the low pitch in a moving siren. The early universe, on the other hand, expanded in only two dimensions and contracted in the third dimension.

This led to red shift in two directions and blue shift in one. The contracting direction, however, was not always the same in this system. Instead, it alternated erratically between x, y and z.

"According to the classical theory of general relativity, the early universe experienced infinitely many oscillations between contracting and expanding directions," Motter said.

"This could mean that the early evolution of the universe, though not necessarily its current state, depended very sensitively on the initial conditions set by the big bang."

This problem gained a new dimension 22 years ago when two other researchers, Gerson Francisco and George Matsas, found that different descriptions of the same events were leading to different conclusions about the chaotic nature of the early universe. Because different descriptions can represent the perspectives of different observers, this challenged the hypothesis that there would be an agreement among different observers. Within the theory of general relativity, such an agreement goes by the name of a "relativistic invariant."

"Technically, we have established the conditions under which the indicators of chaos are relativistic invariants," Motter said. "Our mathematical characterization also explains existing controversial results. They were generated by singularities induced by the choice of the time coordinate, which are not present for physically admissible observables."

Motter also is an assistant professor of engineering sciences and applied mathematics at the McCormick School of Engineering and Applied Science, a member of the executive committee of the Northwestern Institute on Complex Systems (NICO) and a member of the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

Saturday, June 26, 2010

Cosmic Clocks Could Help Uncover Ripples in Space-Time


An international team of scientists have developed a promising new technique which could turn pulsars -- superb natural cosmic clocks -- into even more accurate time-keepers.
Pulsars appear to be able to switch between two 
states which differ in the current of charged 
particles flowing from the surface into outer space. 
This change in current results in a change of 
slow-down in their rotation rate, such that the 
pulsar 'brakes' faster (upper panel) when the 
currents are large and 'brakes' less fast when the 
currents are weak (lower panel). These currents 
also result in a change in the shape of the beam 
emittedby the pulsar, and hence in the shape of the 
pulse, or tick, as the beam crosses a radio telescope. 
(Credit: Michael Kramer, University of Manchester)

This important advance, led by scientists at The University of Manchester and appearing June 24 in the journal Science Express, could improve the search for gravitational waves and help studies into the origins of the universe.

The direct discovery of gravitational waves, which pass over cosmic clocks and cause them to change, could allow scientists to study violent events such as the merging of super-massive black holes and help understand the universe shortly after its formation in the Big Bang.

The scientists made their breakthrough using decades-long observations from the 76-m Lovell radio telescope at The University of Manchester's Jodrell Bank Observatory to track the radio signals of extreme stars known as pulsars.

Pulsars are spinning collapsed stars which have been studied in great detail since their discovery in 1967. The extremely stable rotation of these cosmic fly-wheels has previously led to the discovery of the first planets orbiting other stars and provided stringent tests for theories of gravity that shape the Universe.

However, this rotational stability is not perfect and, until now, slight irregularities in their spin have significantly reduced their usefulness as precision tools.

The team, led by the University of Manchester's Professor Andrew Lyne, has used observations from the Lovell telescope to explain these variations and to demonstrate a method by which they may be corrected.

Professor Lyne explains: "Mankind's best clocks all need corrections, perhaps for the effects of changing temperature, atmospheric pressure, humidity or local magnetic field. Here, we have found a potential means of correcting an astrophysical clock."

The rate at which all pulsars spin is known to be decreasing very slowly. What the team has found is that the deviations arise because there are actually two spin-down rates and not one, and that the pulsar switches between them, abruptly and rather unpredictably.

These changes are associated with a change in the shape of the pulse, or tick, emitted by the pulsar. Because of this, precision measurements of the pulse shape at any particular time indicate exactly what the slowdown rate is and allow the calculation of a "correction." This significantly improves their properties as clocks.

The results give a completely new insight into the extreme conditions near neutron stars and also offer the potential for improving already very precise experiments in gravitation.

It is hoped that this new understanding of pulsar spin-down will improve the chances that the fastest spinning pulsars will be used to make the first direct detection of ripples, known as gravitational waves, in the fabric of space-time.

The University of Manchester team worked closely on the project with Dr George Hobbs of the Australia Telescope National Facility, Professor Michael Kramer of the Max Planck Institute for Radioastronomy and Professor Ingrid Stairs of the University of British Columbia.

The research was funded by the Science and Technology Facilities Council. Their Director of Science, Professor John Womersley, said: "Astronomy is unlike most other sciences, as we cannot go out and measure directly the properties of stars and galaxies.

"They have to be calculated based on our understanding of how the Universe works -- which means that something as significant as being able to use pulsars as cosmic clocks, a new standard for time measurement, will have far-reaching consequences for advancing science and our understanding of the Universe."

Many observatories around the world are attempting to use pulsars in order to detect the gravitational waves that are expected to be created by super-massive binary black holes in the Universe.

With the new technique, the scientists may be able to reveal the gravitational wave signals that are currently hidden because of the irregularities in the pulsar rotation.

Head of the Pulsar Group at The University of Manchester Dr Ben Stappers said: "These exciting results were only possible because of the quality and duration of the unique Lovell Telescope pulsar timing database."
Enhanced by Zemanta

Friday, March 5, 2010

Exotic Antimatter: Heaviest Antinucleus Made


An international team of scientists studying high-energy collisions of gold ions at the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference particle accelerator located at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, has published evidence of the most massive antinucleus discovered to date.

The diagram above is known as the 3-D chart of the nuclides. The familiar Periodic Table arranges the elements according to their atomic number, Z, which determines the chemical properties of each element. Physicists are also concerned with the N axis, which gives the number of neutrons in the nucleus. The third axis represents strangeness, S, which is zero for all naturally occurring matter, but could be non-zero in the core of collapsed stars. Antinuclei lie at negative Z and N in the above chart, and the newly discovered antinucleus (magenta) now extends the 3-D chart into the new region of strange antimatter. (Credit: Image courtesy of DOE/Brookhaven National Laboratory)

The new antinucleus, discovered at RHIC's STAR detector, is a negatively charged state of antimatter containing an antiproton, an antineutron, and an anti-Lambda particle. It is also the first antinucleus containing an anti-strange quark. The results are published online by Science Express on March 4, 2010.

"This experimental discovery may have unprecedented consequences for our view of the world," commented theoretical physicist Horst Stoecker, Vice President of the Helmholtz Association of German National Laboratories. "This antimatter pushes open the door to new dimensions in the nuclear chart -- an idea that just a few years ago, would have been viewed as impossible."

The discovery may help elucidate models of neutron stars and opens up exploration of fundamental asymmetries in the early universe.

New nuclear terrain

All terrestrial nuclei are made of protons and neutrons (which in turn contain only up and down quarks). The standard Periodic Table of Elements is arranged according to the number of protons, which determine each element's chemical properties. Physicists use a more complex, three-dimensional chart to also convey information on the number of neutrons, which may change in different isotopes of the same element, and a quantum number known as "strangeness," which depends on the presence of strange quarks (see diagram). Nuclei containing one or more strange quarks are called hypernuclei.

For all ordinary matter, with no strange quarks, the strangeness value is zero and the chart is flat. Hypernuclei appear above the plane of the chart. The new discovery of strange antimatter with an antistrange quark (an antihypernucleus) marks the first entry below the plane.

This study of the new antihypernucleus also yields a valuable sample of normal hypernuclei, and has implications for our understanding of the structure of collapsed stars.

"The strangeness value could be non-zero in the core of collapsed stars," said Jinhui Chen, one of the lead authors, a postdoctoral researcher at Kent State University and currently a staff scientist at the Shanghai Institute of Applied Physics, "so the present measurements at RHIC will help us distinguish between models that describe these exotic states of matter."

The findings also pave the way towards exploring violations of fundamental symmetries between matter and antimatter that occurred in the early universe, making possible the very existence of our world.

Collisions at RHIC fleetingly produce conditions that existed a few microseconds after the Big Bang, which scientists believe gave birth to the universe as we know it some 13.7 billion years ago. In both nucleus-nucleus collisions at RHIC and in the Big Bang, quarks and antiquarks emerge with equal abundance. At RHIC, among the collision fragments that survive to the final state, matter and antimatter are still close to equally abundant, even in the case of the relatively complex antinucleus and its normal-matter partner featured in the present study. In contrast, antimatter appears to be largely absent from the present-day universe.

"Understanding precisely how and why there's a predominance of matter over antimatter remains a major unsolved problem of physics," said Brookhaven physicist Zhangbu Xu, another one of the lead authors. "A solution will require measurements of subtle deviations from perfect symmetry between matter and antimatter, and there are good prospects for future antimatter measurements at RHIC to address this key issue."

The STAR team has found that the rate at which their heaviest antinucleus is produced is consistent with expectations based on a statistical collection of antiquarks from the soup of quarks and antiquarks generated in RHIC collisions. Extrapolating from this result, the experimenters believe they should be able to discover even heavier antinuclei in upcoming collider running periods. Theoretical physicist Stoecker and his team have predicted that strange nuclei around double the mass of the newly discovered state should be particularly stable.

RHIC's STAR collaboration is now poised to resume antimatter studies with greatly enhanced capabilities. The scientists expect to increase their data by about a factor of 10 in the next few years.

The STAR collaboration is composed of 54 institutions from 13 countries. Research at RHIC is funded primarily by the U.S. Department of Energy's Office of Science and by various national and international collaborating institutions.
Reblog this post [with Zemanta]

Sunday, March 15, 2009

Physicists closer to finding 'God Particle'



Physicists have come closer to finding the elusive "God Particle," which they hope could one day explain why particles have mass, the US Department of Fermi National Accelerator Laboratory announced. Researchers at the Fermilab have managed to shrink the territory where the elusive Higgs Boson particle is expected to be found - a discovery placing the American research institute ahead of its European rival in the race to discover one of the biggest prizes in physics.

Physicists have long puzzled over how particles acquire mass. In 1964, a British physicist, Peter Higgs, came up with this idea: there must exist a background field that would act rather like treacle. Particles passing through it would acquire mass by being dragged through a mediator, which theoreticians dubbed the Higgs Boson.

The standard quip about the Higgs is that it is the "God Particle" - it is everywhere but remains frustratingly elusive. Confirming the Higgs would fill a huge gap in the so-called Standard Model, the theory that summarizes our present knowledge of particles. Over the years, scientists have whittled down the ranges of mass that the Higgs is likely to have.

Physicists were hopeful that the particle could be found with Europe's Big Bang atom-smasher, the Large Hadron Collider. But the Collider was shut down just days after it was turned on in September 2008 at the European Organisation for Nuclear Research (CERN) below the Franco-Swiss border.

It is not scheduled to be turned back on until September of this year, while researchers at the rival Fermilab have cranked up their efforts to discover the Higgs. Researchers at CERN had already determined that the Higgs must weigh more than 114 GeV/c2, Femilab said in a press release.

Calculations of quantum effects involving the Higgs Boson require its mass to be less than 185 GeV/c2. Using Fermilab's Tevatron collider, researchers were able to "carve out a section in the middle of this range and establish that it cannot have a mass in between 160 and 170 GeV/c2."

They did this by combing the efforts of two major research groups that have analyzed three inverse femtobarns of collision data -- the scientific unit that scientists use to count the number of collisions. Each experiment expects to receive a total of about 10 inverse femtobarns by the end of 2010.

"A particle collision at the Tevatron collider can produce a Higgs boson in many different ways, and the Higgs particle can then decay into various particles," said Fermilab researcher Rob Roser. "Each experiment examines more and more possibilities. Combining all of them, we hope to see a first hint of the Higgs particle."


If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]