BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Tuesday, April 28, 2009

Single-molecule Nano-vehicles Synthesized: 'Fantastic Voyage' Not So Far-Fetched


James Tour and coworkers at Rice University synthesized a molecular car with four carbon-based wheels that roll on axles made from linked carbon atoms. The nano-car's molecular wheels are 5,000 times smaller than a human cell. A powerful technique that allows viewing objects at the atomic level called scanning tunneling microscopy reveals the wheels roll perpendicular to the axles, rather than sliding about like a car on ice as the car moves back and forth on a surface. (Credit: Y. Shirai/Rice University)

Imagine producing vehicles so small they would be about the size of a molecule and powered by engines that run on sugar. To top it off, a penny would buy a million of them.


A new article published in the May 2009 issue of Scientific American asks readers to do just that.


The concept is nearly unthinkable, but it's exactly the kind of thing occupying National Science Foundation supported researchers at Penn State and Rice universities.


For several years, Ayusman Sen, who heads Penn State's department of chemistry, and his colleague Thomas E. Mallouk, director of the Center for Nanoscale Science at Penn State, have investigated technologies that could realize these remarkable machines whose uses might include delivering medicine to specific tissue, accomplishing surgeries or communicating with the outside world from inside the human body.


Though researchers consistently have improved ways to build nano-machines, the stumbling block has been finding a way to power them. Shrinking energy producers--internal combustion engines, electric motors or jet engines--below millimeter dimensions is not an easy task, but researchers may be closer to a fantastic solution.


In the 1966 movie Fantastic Voyage, scientists shrink a submarine to microscopic size and inject it into the blood stream of a brilliant scientist, who has a blood clot forming in his brain. The nano-sized surgeons then set out to remove the blood clot.


Today, researchers can steer nano-machines, use them to convey cargo, and guide them using electromagnetic forces or chemical interactions. All of this, they say, makes the world seen in Fantastic Voyage not so far-fetched.


The article -- "How to Build Nanotech Motors" is available on the Scientific American web site at: http://www.sciam.com/article.cfm?id=how-to-build-nanotech-motors


If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Sunday, April 26, 2009

The Story Of X: Evolution Of A Sex Chromosome


Move over, Y chromosome – it's time X got some attention.

In the first evolutionary study of the chromosome associated with being female, University of California, Berkeley, biologist Doris Bachtrog and her colleagues show that the history of the X chromosome is every bit as interesting as the much-studied, male-determining Y chromosome, and offers important clues to the origins and benefits of sexual reproduction.


"Contrary to the traditional view of being a passive player, the X chromosome has a very active role in the evolutionary process of sex chromosome differentiation," said Bachtrog, an assistant professor of integrative biology and a member of UC Berkeley's Center for Theoretical Evolutionary Genomics.


Bachtrog, UC Berkeley post-doctoral fellow Jeffrey D. Jensen and former UC San Diego post-doc Zhi Zhang, now at the University of Munich, detail their findings in this week's edition of the open-access journal PLoS Biology.


"In our manuscript, we demonstrate for the first time the flip side of the sex chromosome evolution puzzle: The X chromosome undergoes periods of intense adaptation in the evolutionary process of creating new sections of the genome that govern sexual differentiation in many species, including our own," she said.


Not all animals and plants employ genes to determine if an embryo becomes male or female. Many reptiles, for example, rely on environmental cues such as temperature to specify male or female.


But in life forms that do set aside a pair of chromosomes to specify sex – from fruit flies to mammals and some plants – the two X chromosomes inherited by females look nearly identical to the other non-sex chromosomes, so-called autosomes, Bachtrog said. The Y chromosome, however, which is inherited by males in concert with one X chromosome, is a withered version of the X, having lost many genes since it stopped recombining with the X chromosome.


In mammals, that probably took place about 150 million years ago, while in the fruit fly Drosophila melanogaster, a laboratory favorite, the sex chromosomes arose independently about 100 million years ago. In both humans and fruit flies, the Y chromosome has dwindled from a few thousand genes to a few dozen.


Hence the intense interest in why and how the Y chromosome lost genes once it stopped interacting with the X. Scientists have found that, as the only chromosome pair that doesn't break and recombine every time a cell divides, the XY pair in males is unable to take advantage of the main way deleterious genetic mutations are eliminated. The XX pair in females does recombine, but for the Y, the only way to get rid of a bad mutation in a gene is to inactivate or delete the entire gene. Over millions of years, inactive genes are lost, and the Y shrinks.


"If you have no recombination, natural selection is less effective at removing detrimental genes," said Bachtrog. "Y is an asexual chromosome, and it pays a price for that: It keeps losing genes."


Bachtrog, whose career has revolved mostly around the study of the degeneration of the Y chromosome, decided to focus on the X chromosome several years ago and went about searching for sex chromosome pairs that have arisen more recently – and thus might be in the process of adapting to their new role. Her paper centers around study of the three sex chromosomes in a rare western fruit fly, Drosophila miranda, a darker-colored cousin of D. melanogaster. (Many creatures have more than one pair of sex chromosomes; the platypus, for example, has five pairs, all inherited together.)


While one of D. miranda's sex chromosomes is descended from the original sex chromosome that appeared in Drosophila nearly 100 million years ago, a second originated perhaps 10 million years ago, and the third about a million years ago. The older two look much alike, Bachtrog said: The Y chromosome in each pair has lost genes to become a shadow of its former self, while the two X chromosomes are indistinguishable from each other.


The third and youngest sex chromosome is different. The Y is not yet shriveled, though it contains many non-functional genes – about half the total – that will eventually be lost. The X, which is dubbed neo-X, is undergoing rapid change, however, with about 10 times the normal amount of adaptation seen in the autosomes, according to the researchers.


By adaptation, Bachtrog means that the gene sequences in the X chromosome are becoming fixed as random mutations have finally settled on a few beneficial changes that accommodate the increasingly irrelevant Y chromosome. Between 10 and 15 percent of neo-X genes show adaptation, compared to only 1-3 percent of autosome genes.


"In hindsight, that is not surprising," Bachtrog said. "Neo-X is facing a much more challenging situation than the autosomes because its pair, the Y chromosome, is degenerating. Its genes are no longer producing proteins, so neo-X has to compensate by up-regulating its genes. We find a lot of genes on the X chromosome are involved in dosage compensation."


In humans, for example, all genes on the X chromosome are twice as active to account for the lack of genes on the Y. Women accommodate this by inactivating one entire X chromosome so as not to produce too much protein, Bachtrog said.


Another change in neo-X that Bachtrog suspects is taking place is the elimination of genes that are harmful to females. Biologists have realized recently that some genes have opposite effects in males and females, and evolution is a tug of war between males jettisoning genes that they find detrimental only to have females put them back, and vice versa.


"A good place to put sexually antagonistic genes that are beneficial to one sex but detrimental to the other is on the sex chromosomes," she said. The Y always ends up in the male, she said, so genes on the Y chromosome won't affect females.


"Conversely, the X chromosome becomes feminized with genes that are good for the female but detrimental to the male," said Bachtrog, adding that the X also becomes demasculinized, losing genes that are of use only in the male.


In search of more insights into the evolution of the X chromosome, Bachtrog said she is looking for fruit fly species with older and younger sex chromosomes "to study sex chromosome evolution in action." She said evidence suggests that adaptation to being a sex chromosome is most intense between 1 and 10 million years after it starts. Bachtrog also is completing assembly of the genome sequence for D. miranda, which is not among the 12 species of Drosophila currently targeted by the genome sequencing community. She hopes that the fly will become a model system like D. melanogaster.


"Now, finally, we are within reach of studying model systems like D. miranda that we couldn't think of several years ago," she said, predicting that "whole genome comparisons will revolutionize evolutionary biology, ecology and many other fields."


The research was funded by the National Institutes of Health, an Alfred P. Sloan Faculty Research Fellowship in Molecular and Computational Biology and a David and Lucile Packard Foundation Fellowship.



If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Monday, April 20, 2009

Medical Micro-robots Made As Small As Bacteria


Artificial bacterial flagella are about half as long as the thickness of a human hair.
They can swim at a speed of up to one body length per second.
This means that they already resemble their natural role models very closely.
(Credit: Institute of Robotics and Intelligent Systems/ETH Zurich)


For the first time, ETH Zurich researchers have built micro-robots as small as bacteria. Their purpose is to help cure human beings.

They look like spirals with tiny heads, and screw through the liquid like miniature corkscrews. When moving, they resemble rather ungainly bacteria with long whip-like tails. They can only be observed under a microscope because, at a total length of 25 to 60 µm, they are almost as small as natural flagellated bacteria. Most are between 5 and 15 µm long, a few are more than 20 µm.


Mimicking nature


The tiny spiral-shaped, nature-mimicking lookalikes of E. coli and similar bacteria. are called “Artificial Bacterial Flagella” (ABFs), the “flagella” referring to their whip-like tails. They were invented, manufactured and enabled to swim in a controllable way by researchers in the group led by Bradley Nelson, Professor at the Institute of Robotics and Intelligent Systems at ETH Zurich. In contrast to their natural role model, some of which cause diseases, the ABFs are intended to help cure diseases in the future.


The practical realization of these artificial bacteria, the smallest yet created, with a rigid flagellum and external actuation, was made possible mainly by the self-scrolling technique from which the spiral-shaped ABFs are constructed. ABFs are fabricated by vapor-depositing several ultra-thin layers of the elements indium, gallium, arsenic and chromium onto a substrate in a particular sequence. They are then patterned from it by means of lithography and etching. This forms super-thin, very long narrow ribbons that curl themselves into a spiral shape as soon as they are detached from the substrate, because of the unequal molecular lattice structures of the various layers. Depending on the deposited layer thickness and composition, a spiral is formed with different sizes which can be precisely defined by the researchers. Nelson says, “We can specify not only how small the spiral is, but even the scrolling direction of the ribbon that forms the spiral.”


External propulsion via magnetic field


Even before releasing the ribbon that will afterwards form the artificial flagellum, a kind of head for the mini-robot is attached to one of its ends. It consists of a chromium-nickel-gold tri-layer film, also vapor-deposited. Nickel is soft-magnetic, in contrast to the other materials used, which are non-magnetic. Nelson explains that, “This tiny magnetic head enables the ABF to move in a specific way in a magnetic field.” The spiral-shaped ABF swim through the liquid and its movements can be observed and recorded under a microscope.


With the software developed by the group, the ABF can be steered to a specific target by tuning the strength and direction of the rotating magnetic field which is generated by several coils. The ABFs can move forwards and backwards, upwards and downwards, and can also rotate in all directions. Brad Nelson says “There’s a lot of physics and mathematics behind the software.” The ABFs do not need energy of their own to swim, nor do they have any moving parts. The only decisive thing is the magnetic field, towards which the tiny head constantly tries to orientate itself and in whose direction it moves. The ABFs currently swim at a speed of up to 20 µm, i.e. up to one body length, per second. Nelson expects that it will be possible to increase the speed to more than 100 µm per second. For comparison: E. coli swims at 30 µm per second.


Possible applications in medicine


The ABFs have been designed for biomedical applications. For example, they could carry medicines to predetermined targets in the body, remove plaque deposits in the arteries or help biologists to modify cellular structures that are too small for direct manipulation by researchers. In initial experiments, the ETH Zurich researchers have already made the ABFs carry around polystyrene micro-spheres.


At the moment, however, the group is still carrying out basic research. Further investigations will be needed before there can be any practical applications. Nelson explains that, “For applications in the human body, it would first of all be necessary to steer the ABFs precisely, track their route without optical monitoring and guarantee their localization at all times.” If ABFs are to deliver drugs, they would first of all have to be functionalized in a feasible way and then need to be able to release the drugs precisely in situ. The plan is for the ABFs themselves to become even faster and smaller. Nelson is enthusiastic about how ingeniously nature has designed natural bacteria. He is happy that his group’s ABFs already resemble the originals so closely.


If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Friday, April 17, 2009

New Nucleotide In DNA Could Revolutionize Epigenetics



Chemical structure of cytosine, one of the four nucleotide bases that make up DNA.
New research shows that two additional nucleotides -- 5-methylcytosine and 5-hydroxymethylcytosine -- can sometimes replace cytosine in the DNA
double helix to regulate which genes are expressed. (Credit: Wikimedia Commons)


Anyone who studied a little genetics in high school has heard of adenine, thymine, guanine and cytosine – the A, T, G and C that make up the DNA code. But those are not the whole story. The rise of epigenetics in the past decade has drawn attention to a fifth nucleotide, 5-methylcytosine (5-mC), that sometimes replaces cytosine in the famous DNA double helix to regulate which genes are expressed. And now there's a sixth: 5-hydroxymethylcytosine.

In experiments to be published online April 16 by Science, researchers reveal an additional character in the mammalian DNA code, opening an entirely new front in epigenetic research.


The work, conducted in Nathaniel Heintz's Laboratory of Molecular Biology at The Rockefeller University, suggests that a new layer of complexity exists between our basic genetic blueprints and the creatures that grow out of them. "This is another mechanism for regulation of gene expression and nuclear structure that no one has had any insight into," says Heintz, who is also a Howard Hughes Medical Institute investigator. "The results are discrete and crystalline and clear; there is no uncertainty. I think this finding will electrify the field of epigenetics."


Genes alone cannot explain the vast differences in complexity among worms, mice, monkeys and humans, all of which have roughly the same amount of genetic material. Scientists have found that these differences arise in part from the dynamic regulation of gene expression rather than the genes themselves. Epigenetics, a relatively young and very hot field in biology, is the study of nongenetic factors that manage this regulation.


One key epigenetic player is DNA methylation, which targets sites where cytosine precedes guanine in the DNA code. An enzyme called DNA methyltransferase affixes a methyl group to cytosine, creating a different but stable nucleotide called 5-methylcytosine. This modification in the promoter region of a gene results in gene silencing.


Some regional DNA methylation occurs in the earliest stages of life, influencing differentiation of embryonic stem cells into the different cell types that constitute the diverse organs, tissues and systems of the body. Recent research has shown, however, that environmental factors and experiences, such as the type of care a rat pup receives from its mother, can also result in methylation patterns and corresponding behaviors that are heritable for several generations. Thousands of scientific papers have focused on the role of 5-methylcytosine in development.


The discovery of a new nucleotide may make biologists rethink their approaches to investigating DNA methylation. Ironically, the latest addition to the DNA vocabulary was found by chance during investigations of the level of 5-methylcytosine in the very large nuclei of Purkinje cells, says Skirmantas Kriaucionis, a postdoctoral associate in the Heintz lab, who did the research. "We didn't go looking for this modification," he says. "We just found it."


Kriaucionis was working to compare the levels of 5-methylcytosine in two very different but connected neurons in the mouse brain — Purkinje cells, the largest brain cells, and granule cells, the most numerous and among the smallest. Together, these two types of cells coordinate motor function in the cerebellum. After developing a new method to separate the nuclei of individual cell types from one another, Kriaucionis was analyzing the epigenetic makeup of the cells when he came across substantial amounts of an unexpected and anomalous nucleotide, which he labeled 'x.'


It accounted for roughly 40 percent of the methylated cytosine in Purkinje cells and 10 percent in granule neurons. He then performed a series of tests on 'x,' including mass spectrometry, which determines the elemental components of molecules by breaking them down into their constituent parts, charging the particles and measuring their mass-to-charge ratio. He repeated the experiments more than 10 times and came up with the same result: x was 5-hydroxymethylcytosine, a stable nucleotide previously observed only in the simplest of life forms, bacterial viruses. A number of other tests showed that 'x' could not be a byproduct of age, DNA damage during the cell-type isolation procedure or RNA contamination. "It's stable and it's abundant in the mouse and human brain," Kriaucionis says. "It's really exciting."


What this nucleotide does is not yet clear. Initial tests suggested that it may play a role in demethylating DNA, but Kriaucionis and Heintz believe it may have a positive role in regulating gene expression as well. The reason that this nucleotide had not been seen before, the researchers say, is because of the methodologies used in most epigenetic experiments. Typically, scientists use a procedure called bisulfite sequencing to identify the sites of DNA methylation. But this test cannot distinguish between 5-hydroxymethylcytosine and 5-methylcytosine, a shortcoming that has kept the newly discovered nucleotide hidden for years, the researchers say. Its discovery may force investigators to revisit earlier work. The Human Epigenome Project, for example, is in the process of mapping all of the sites of methylation using bisulfite sequencing. "If it turns out in the future that (5-hydroxymethylcytosine and 5-methylcytosine) have different stable biological meanings, which we believe very likely, then epigenome mapping experiments will have to be repeated with the help of new tools that would distinguish the two," says Kriaucionis.


Providing further evidence for their case that 5-hydroxymethylcytosine is a serious epigenetic player, a second paper to be published in Science by an independent group at Harvard reveals the discovery of genes that produce enzymes that specifically convert 5-methylcytosine into 5-hydroxymethylcytosine. These enzymes may work in a way analogous to DNA methyltransferase, suggesting a dynamic system for regulating gene expression through 5-hydroxymethylcytosine. Kriaucionis and Heintz did not know of the other group's work, led by Anjana Rao, until earlier this month. "You look at our result, and the beautiful studies of the enzymology by Dr. Rao's group, and realize that you are at the tip of an iceberg of interesting biology and experimentation," says Heintz, a neuroscientist whose research has not focused on epigenetics in the past. "This finding of an enzyme that can convert 5-methylcytosine to 5-hydroxymethylcytosine establishes this new epigenetic mark as a central player in the field."


Kriaucionis is now mapping the sites where 5-hydroxymethylcytosine is present in the genome, and the researchers plan to genetically modify mice to under- or overexpress the newfound nucleotide in specific cell types in order to study its effects. "This is a major discovery in the field, and it is certain to be tied to neural function in a way that we can decipher," Heintz says.

==================================================================
Journal reference:
  1. Skirmantas Kriaucionis and Nathaniel Heintz. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science, 2009; DOI: 10.1126/science.1169786

Adapted from materials provided by Rockefeller University, via EurekAlert!, a service of AAAS
.


If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Sunday, April 12, 2009

Sleep: Spring Cleaning For The Brain?


On the left, the brain of the well-rested blue fly has low levels of a synaptic protein called BRP in this 3D view from a confocal mircoscope. On the right, the brain of the sleep-deprived fly glows orange in areas of BRP concentration. (Bruchpilot or BRP is a protein involved in communication between neurons.)In the tired fly, the protein is present at high concentartions in three major areas of the fly's brain that are associated with learning. Sleep reduces the levels of this protein, an indication that synapses get smaller and/or weaker. This process of "downscaling" may be important so the brain is reset to normal levels of synaptic activity and can begin learning again the next day. (Credit: Courtesy of UW Health Public Affairs)

If you've ever been sleep-deprived, you know the feeling that your brain is full of wool.


Now, a study published in the April 3 edition of the journal Science has molecular and structural evidence of that woolly feeling — proteins that build up in the brains of sleep-deprived fruit flies and drop to lower levels in the brains of the well-rested. The proteins are located in the synapses, those specialized parts of neurons that allow brain cells to communicate with other neurons.


Sleep researchers at the University of Wisconsin-Madison School of Medicine and Public Health believe it is more evidence for their theory of "synaptic homeostasis." This is the idea that synapses grow stronger when we're awake as we learn and adapt to an ever-changing the environment, that sleep refreshes the brain by bringing synapses back to a lower level of strength. This is important because larger synapses consume a lot of energy, occupy more space and require more supplies, including the proteins examined in this study.


Sleep — by allowing synaptic downscaling — saves energy, space and material, and clears away unnecessary "noise" from the previous day, the researchers believe. The fresh brain is then ready to learn again in the morning.


The researchers — Giorgio Gilestro, Giulio Tononi and Chiara Cirelli, of the Center for Sleep and Consciousness — found that levels of proteins that carry messages in the synapses (or junctions) between neurons drop by 30 to 40 percent during sleep.


In the Science paper, three-dimensional photos using confocal microscopy show the brains of sleep-deprived flies filled with a synaptic protein called Bruchpilot (BRP), a component of the machinery that allows communication among neurons. In well-rested flies, levels of BRP and four other synaptic proteins drop back to low levels, providing evidence that sleep resets the brain to allow more growth and learning the next day.


"We know that sleep is necessary for our brain to function properly, to learn new things every day, and also, in some cases, to consolidate the memory of what we learned during the day," says Cirelli, associate professor of psychiatry. "During sleep, we think that most, if not all, synapses are downscaled: at the end of sleep, the strongest synapses shrink, while the weakest synapses may even disappear."


The confocal microscope views show this happening in all three major areas of the fruit-fly brain, which are known to be very plastic (involved in learning).


In a paper published last year, Tononi, Cirelli and their co-investigators found similar chemical changes in the synapses of rats' brains. They also showed that rats' brains have a stronger "evoked response" to electrical stimulation after being awake, and a weaker one after sleep. That finding provided more evidence, using electrophysiological rather than molecular techniques, consistent with the idea that synapses grow stronger during the day, then weaker during sleep.


Because sleep performs the same function in the brains of species as diverse as fruit flies and rats, Cirelli says it was likely conserved by evolution because it is so important to an animal's health and survival.


The Wisconsin laboratory has pioneered ways of studying sleep in different species, including fruit flies.


To keep the flies awake, they're put into a "fly agitator" that holds 10 plates, each containing 32 drowsy flies. A robot arm shakes the plates occasionally to keep the flies from dozing.


Flies were deprived of sleep for as long as 24 hours. Researchers then dissected their brains and measured the levels of four pre-synaptic proteins and one post-synaptic protein. All levels rose progressively during periods of wakefulness and fell after sleep. Other experiments confirmed that the changes in protein levels were not caused by exposure to light and darkness or by the stimulation itself, but by sleep and waking. They also used confocal microscopy and an antibody that specifically recognizes BRP to measure the expression of this protein in many fly-brain areas.


Higher levels of these synaptic proteins during waking may be evidence of random experiences that fill the brain every day and need to be dissipated to make room for the learning and memories that are truly significant.


"Much of what we learn in a day, we don't really need to remember," Cirelli says. "If you've used up all the space, you can't learn more before you clean out the junk that is filling up your brain."

==================================================================

Journal reference:

  1. Giorgio F. Gilestro, Giulio Tononi, and Chiara Cirelli. Widespread Changes in Synaptic Markers as a Function of Sleep and Wakefulness in Drosophila. Science, 2009; 324 (5923): 109 DOI: 10.1126/science.1166673
Adapted from materials provided by University of Wisconsin-Madison.


If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Monday, April 6, 2009

Young Pulsar Shows Its Hand


This graphic demonstrates the difference in physical size between the nebula around the pulsar B1509-58 and its more famous cousin, the Crab Nebula, seen on the left. The Crab was generated when a star collapsed, as seen in 1054 A.D. Since then, the nebula its pulsar created has increased in size to some 10 light years. In contrast, astronomers think the B1509-58 system is about 1,700 years old, yet its nebula now covers some 150 light years. The discrepancy in these sizes may be due to the different environment each pulsar was born into. (Credit: NASA/CXC/SAO/P. Slane et al.)

A small, dense object only twelve miles in diameter is responsible for a beautiful X-ray nebula that spans 150 light years.

At the center of a new image made by NASA's Chandra X-ray Observatory is a very young and powerful pulsar, known as PSR B1509-58, or B1509 for short. The pulsar is a rapidly spinning neutron star which is spewing energy out into the space around it to create complex and intriguing structures, including one that resembles a large cosmic hand.


In the new image, the lowest energy X-rays that Chandra detects are red, the medium range is green, and the most energetic ones are colored blue. Astronomers think that B1509 is about 1,700 years old and is located about 17,000 light years away.


Neutron stars are created when massive stars run out of fuel and collapse. B1509 is spinning completely around almost 7 times every second and is releasing energy into its environment at a prodigious rate -- presumably because it has an intense magnetic field at its surface, estimated to be 15 trillion times stronger than the Earth's magnetic field.


The combination of rapid rotation and ultra-strong magnetic field makes B1509 one of the most powerful electromagnetic generators in the Galaxy. This generator drives an energetic wind of electrons and ions away from the neutron star. As the electrons move through the magnetized nebula, they radiate away their energy and create the elaborate nebula seen by Chandra.


In the innermost regions, a faint circle surrounds the pulsar, and marks the spot where the wind is rapidly decelerated by the slowly expanding nebula. In this way, B1509 shares some striking similarities to the famous Crab Nebula. However B1509's nebula is 15 times wider than the Crab's diameter of 10 light years.


Finger-like structures extend to the north, apparently energizing knots of material in a neighboring gas cloud known as RCW 89. The transfer of energy from the wind to these knots makes them glow brightly in X-rays (orange and red features to the upper right of the image). The temperature in this region appears to vary in a circular pattern around this ring of emission, suggesting that the pulsar may be precessing like a spinning top and sweeping an energizing beam around the gas in RCW 89.


NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.


If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Sunday, April 5, 2009

Hydrogen Cars Closer To Reality With New Storage System


Issam Mudawar, from left, a Purdue professor of mechanical engineering, discusses a
hydrogen-storage system for cars with graduate student Milan Visaria and Timothée
Pourpoint, an assistant professor of aeronautics and astronautics and manager of the
Hydrogen Systems Laboratory. Researchers have created the system's heat exchanger,
which is critical because it allows the system to be filled quickly. The research is funded
by General Motors Corp. (Credit: Purdue News Service photo/Andrew Hancock)

Researchers have developed a critical part of a hydrogen storage system for cars that makes it possible to fill up a vehicle's fuel tank within five minutes with enough hydrogen to drive 300 miles.


The system uses a fine powder called metal hydride to absorb hydrogen gas. The researchers have created the system's heat exchanger, which circulates coolant through tubes and uses fins to remove heat generated as the hydrogen is absorbed by the powder.


The heat exchanger is critical because the system stops absorbing hydrogen effectively if it overheats, said Issam Mudawar, a professor of mechanical engineering who is leading the research.


"The hydride produces an enormous amount of heat," Mudawar said. "It would take a minimum of 40 minutes to fill the tank without cooling, and that would be entirely impractical."


Researchers envision a system that would enable motorists to fill their car with hydrogen within a few minutes. The hydrogen would then be used to power a fuel cell to generate electricity to drive an electric motor.


The research, funded by General Motors Corp. and directed by GM researchers Darsh Kumar, Michael Herrmann and Abbas Nazri, is based at the Hydrogen Systems Laboratory at Purdue's Maurice J. Zucrow Laboratories. In February, the team applied for three provisional patents related to this technology.


"The idea is to have a system that fills the tank and at the same time uses accessory connectors that supply coolant to extract the heat," said Mudawar, who is working with mechanical engineering graduate student Milan Visaria and Timothée Pourpoint, a research assistant professor of aeronautics and astronautics and manager of the Hydrogen Systems Laboratory. "This presented an engineering challenge because we had to figure out how to fill the fuel vessel with hydrogen quickly while also removing the heat efficiently. The problem is, nobody had ever designed this type of heat exchanger before. It's a whole new animal that we designed from scratch."


The metal hydride is contained in compartments inside the storage "pressure vessel." Hydrogen gas is pumped into the vessel at high pressure and absorbed by the powder.


"This process is reversible, meaning the hydrogen gas may be released from the metal hydride by decreasing the pressure in the storage vessel," Mudawar said. "The heat exchanger is fitted inside the hydrogen storage pressure vessel. Due to space constraints, it is essential that the heat exchanger occupy the least volume to maximize room for hydrogen storage."


Conventional automotive coolant flows through a U-shaped tube traversing the length of the pressure vessel and heat exchanger. The heat exchanger, which is made mostly of aluminum, contains a network of thin fins that provide an efficient cooling path between the metal hydride and the coolant.


"This milestone paves the way for practical on-board hydrogen storage systems that can be charged multiple times in much the same way a gasoline tank is charged today," said Kumar, a researcher at GM's Chemical & Environmental Sciences Laboratory and the GM R&D Center in Warren, Mich. "As newer and better metal hydrides are developed by research teams worldwide, the heat exchanger design will provide a ready solution for the automobile industry."


The researchers have developed the system over the past two years. Because metal hydride reacts readily with both air and moisture, the system must be assembled in an airtight chamber, Pourpoint said.


Research activities at the hydrogen laboratory involve faculty members from the schools of aeronautics and astronautics, mechanical engineering, and electrical and computer engineering.


If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Saturday, April 4, 2009

I think, therefore I, robot


Human researchers have developed their mechanical counterparts: ‘robo-scientists’ that can think independently,

Two separate teams of researchers, reporting on Thursday in the journal Science, said that they had created machines that could reason, formulate theories and discover scientific knowledge on their own, marking a major advance in the field of artificial intelligence.

Such “robo-scientists” could be put to work unravelling complex biological systems, designing new drugs, modelling the world’s climate or understanding the cosmos.

For the moment, though, they are performing more humble tasks...

Meet Adam: The first robot scientist to make an independent discovery

A robot developed by UK scientists, which can think up scientific theories and test them with almost no human help, has ushered in a new era in artificial intelligence.

In tests, the machine – named Adam – was able to identify previously unknown genetic processes in baker’s yeast.

It produced hypotheses about how certain genes should work and devised tests to prove its ideas were right.

Professor Ross King of Aberystwyth University, Wales – who helped create Adam – said: “This is the first time we believe such a system has discovered novel scientific knowledge. We are very excited about it.”

The robot takes up 15 square metres of space at the university and is equipped with an arm and a range of devices, including an automated freezer and an incubator.

“It is not the management and analysis of complex data that is the big deal about Adam. What’s amazing is the ability of the machine to reason with those data and make proposals about how a living thing works,” said Stephen Oliver, who co-authored the study on the project.

A second robot, called Eve, will work alongside it to help find new medicines for diseases such as malaria.

Professor Douglas Kell, whose biotech group BBSRC funded the research, said: “Computers play a fundamental role in the scientific process, which is becoming increasingly automated, for instance, in drug design and DNA sequencing.”

“Ultimately, we hope to have teams of human and robot scientists working together in labs,” King said.

Although Adam’s discoveries were simple, experts believe future models may one day rival Albert Einstein for genius.

King said: “I wouldn’t rule out the possibility, but it probably wouldn’t be in my lifetime.”



If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Friday, April 3, 2009

Virus-built Battery Could Power Cars, Electronic Devices


Angela Belcher holds a display of the virus-built battery she helped engineer. The battery -- the silver-colored disc -- is being used to power an LED. (Credit: Photo by Donna Coveney)

For the first time, MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery.

The new virus-produced batteries have the same energy capacity and power performance as state-of-the-art rechargeable batteries being considered to power plug-in hybrid cars, and they could also be used to power a range of personal electronic devices, said Angela Belcher, the MIT materials scientist who led the research team.


The new batteries, described in the April 2 online edition of Science, could be manufactured with a cheap and environmentally benign process: The synthesis takes place at and below room temperature and requires no harmful organic solvents, and the materials that go into the battery are non-toxic.


In a traditional lithium-ion battery, lithium ions flow between a negatively charged anode, usually graphite, and the positively charged cathode, usually cobalt oxide or lithium iron phosphate. Three years ago, an MIT team led by Belcher reported that it had engineered viruses that could build an anode by coating themselves with cobalt oxide and gold and self-assembling to form a nanowire.


In the latest work, the team focused on building a highly powerful cathode to pair up with the anode, said Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering. Cathodes are more difficult to build than anodes because they must be highly conducting to be a fast electrode, however, most candidate materials for cathodes are highly insulating (non-conductive).


To achieve that, the researchers, including MIT Professor Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.


Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically "wired" to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time.


The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.


The team found that incorporating carbon nanotubes increases the cathode's conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but "we expect them to be able to go much longer," Belcher said.


The prototype is packaged as a typical coin cell battery, but the technology allows for the assembly of very lightweight, flexible and conformable batteries that can take the shape of their container.


Last week, MIT President Susan Hockfield took the prototype battery to a press briefing at the White House where she and U.S. President Barack Obama spoke about the need for federal funding to advance new clean-energy technologies.


Now that the researchers have demonstrated they can wire virus batteries at the nanoscale, they intend to pursue even better batteries using materials with higher voltage and capacitance, such as manganese phosphate and nickel phosphate, said Belcher. Once that next generation is ready, the technology could go into commercial production, she said.


Lead authors of the Science paper are Yun Jung Lee and Hyunjung Yi, graduate students in materials science and engineering. Other authors are Woo-Jae Kim, postdoctoral fellow in chemical engineering; Kisuk Kang, recent MIT PhD recipient in materials science and engineering; and Dong Soo Yun, research engineer in materials science and engineering.


The research was funded by the Army Research Office Institute of the Institute of Collaborative Technologies, and the National Science Foundation through the Materials Research Science and Engineering Centers program.

==================================================================

Journal reference:


  1. Yun Jung Lee, Hyunjung Yi, Woo-Jae Kim, Kisuk Kang, Dong Soo Yun, Michael S. Strano, Gerbrand Ceder, and Angela M. Belcher. Fabricating Genetically Engineered High-Power Lithium Ion Batteries Using Multiple Virus Genes. Science, 2009; DOI: 10.1126/science.1171541

Adapted from materials provided by Massachusetts Institute of Technology
.

If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]

Thursday, April 2, 2009

Carbon Capture Has A Sparkling Future, New Findings Show


Carbon dioxide gas can dissolve in underground water
-- like bottled sparkling water.
(Credit: iStockphoto/Dirk Rietschel)


New research shows that for millions of years carbon dioxide has been stored safely and naturally in underground water in gas fields saturated with the greenhouse gas. The findings – published in Nature April 1 – bring carbon capture and storage a step closer.

Politicians are committed to cutting levels of atmospheric carbon dioxide to slow climate change. Carbon capture and storage is one approach to cut levels of the gas until cleaner energy sources are developed.


But the risks around the long-term storage of millions of cubic metres of carbon dioxide in depleted gas and oil fields has met with some concern, not least because of the possibility of some of the gas escaping and being released back to the atmosphere. Until now, researchers couldn't be sure how the gas would be securely trapped underground.


Naturally-occurring carbon dioxide can be trapped in two ways. The gas can dissolve in underground water – like bottled sparkling water. It can also react with minerals in rock to form new carbonate minerals, essentially locking away the carbon dioxide underground.


Previous research in this area used computer models to simulate the injection of carbon dioxide into underground reservoirs in gas or oil fields to work out where the gas is likely to be stored. Some models predict that the carbon dioxide would react with rock minerals to form new carbonate minerals, while others suggest that the gas dissolves into the water. Real studies to support either of these predictions have, until now, been missing.


To find out exactly how the carbon dioxide is stored in natural gas fields, an international team of researchers - led by the University of Manchester - uniquely combined two specialised techniques. They measured the ratios of the stable isotopes of carbon dioxide and noble gases like helium and neon in nine gas fields in North America, China and Europe. These gas fields were naturally filled with carbon dioxide thousands or millions of years ago.


They found that underground water is the major carbon dioxide sink in these gas fields and has been for millions of years.


Dr Stuart Gilfillan, the lead researcher who completed the project at the University of Edinburgh said: "We've turned the old technique of using computer models on its head and looked at natural carbon dioxide gas fields which have trapped carbon dioxide for a very long time."


"By combining two techniques, we've been able to identify exactly where the carbon dioxide is being stored for the first time. We already know that oil and gas have been stored safely in oil and gas fields over millions of years. Our study clearly shows that the carbon dioxide has been stored naturally and safely in underground water in these fields."


Professor Chris Ballentine of the University of Manchester, the project director, said: "The universities of Manchester and Toronto are international leaders in different aspects of gas tracing. By combining our expertise we have been able to invent a new way of looking at carbon dioxide fields. This new approach will also be essential for monitoring and tracing where carbon dioxide captured from coal-fired power stations goes when we inject it underground – this is critical for future safety verification."


Professor Barbara Sherwood Lollar of the University of Toronto and co-author of the study hopes the new data can be fed into future computer models to make modelling underground carbon capture and storage more accurate.


The work was funded by the Natural Environment Research Council and the Natural Sciences and Engineering Research Council of Canada.

==================================================================

Journal reference:


  1. Stuart M. V. Gilfillan, Barbara Sherwood Lollar, Greg Holland, Dave Blagburn, Scott Stevens, Martin Schoell, Martin Cassidy, Zhenju Ding, Zheng Zhou, Georges Lacrampe-Couloume & Chris J. Ballentine. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature, 2009; 458 (7238): 614 DOI: 10.1038/nature07852
Adapted from materials provided by Natural Environment Research Council, via EurekAlert!, a service of AAAS.

If you like this post, buy me a beer at $3!
Reblog this post [with Zemanta]