BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label UC Berkeley. Show all posts
Showing posts with label UC Berkeley. Show all posts

Thursday, January 5, 2012

Leaping Lizards and Dinosaurs Inspire Robot Design



Leaping lizards have a message for robots: Get a tail! University of California, Berkeley, biologists and engineers -- including undergraduate and graduate students -- studied how lizards manage to leap successfully even when they slip and stumble. They found that lizards swing their tails upward to prevent them from pitching head-over-heels into a rock.

An Agama lizard next to Tailbot, a toy car with an attached tail 
and a toy figure. Sensors detect Tailbot's orientation and swing 
the tail upward to keep the robot from pitching forward, similar 
to the way the lizard uses its tail. 
(Credit: Photo by Robert Full lab, UC Berkeley.)

But after the team added a tail to a robotic car named Tailbot, they discovered that counteracting the effect of a slip is not as simple as throwing your tail in the air. Instead, robots and lizards must actively adjust the angle of their tails just right to remain upright.

"We showed for the first time that lizards swing their tail up or down to counteract the rotation of their body, keeping them stable," said team leader Robert J. Full, UC Berkeley professor of integrative biology. "Inspiration from lizard tails will likely lead to far more agile search-and-rescue robots, as well as ones having greater capability to more rapidly detect chemical, biological or nuclear hazards."

Agile therapod dinosaurs like the velociraptor depicted in the movie Jurassic Park may also have used their tails as stabilizers to prevent forward pitch, Full said. Their tail movement is illustrated in a prescient chase sequence from the 1993 movie in which the animated animal leaps from a balcony onto a T. rex skeleton.

"Muscles willing, the dinosaur could be even more effective with a swing of its tail in controlling body attitude than the lizards," Full said.

Student involvement crucial to research

Full and his laboratory colleagues, including both engineering and biology students, will report their discoveries online on Jan. 5 in advance of publication in the Jan. 12 print edition of the journal Nature. The paper's first author, mechanical engineering graduate student Thomas Libby, also will report the results on Jan. 7 at the annual meeting of the Society for Integrative and Comparative Biology in Charleston, S.C.

Full is enthusiastic about the interplay fostered at UC Berkeley between biologists and engineers in the Center for Interdisciplinary Bio-inspiration in Education and Research (CiBER) lab, within which he offers a research-based teaching lab that provides dozens of undergraduate students with an opportunity to conduct cutting-edge research in teams with graduate students. Each team experiences the benefits of how biologists and engineers approach a problem.

"Learning in the context of original discovery, finding out something that no one has ever know before, really motivated me," said former UC Berkeley integrative biology undergraduate Talia Moore, now a graduate student in the Department of Organismic and Evolutionary Biology at Harvard University. "This research-based lab course … showed me how biologists and engineers can work together to benefit both fields."

"This paper shows that research-based teaching leads to better learning and simultaneously can lead to cutting-edge research," added Full, who last year briefed the U.S. House of Representative's Science, Technology, Engineering and Mathematics (STEM) Education Caucus on this topic. "It also shows the competitive advantage of interdisciplinary approaches and how involvement of undergraduates in research can lead to innovation."

From gecko toe hairs to tails

Full's research over the past 20 years has revealed how the toe hairs of geckos assist them in climbing smooth vertical surfaces and, more recently, how their tails help to keep them from falling when they slip and to right themselves in mid-air.

The new research tested a 40-year-old hypothesis that the two-legged theropod dinosaurs ‑ the ancestors of birds ‑ used their tails as stabilizers while running or dodging obstacles or predators. In Full's teaching laboratory, students noticed a lizard's recovery after slipping during a leap and thought a study of stumbling would be a perfect way to test the value of a tail.

In the CiBER lab, Full and six of his students used high-speed videography and motion capture to record how a red-headed African Agama lizard handled leaps from a platform with different degrees of traction, from slippery to easily-gripped.

They coaxed the lizards to run down a track, vault off a low platform and land on a vertical surface with a shelter on top. When the friction on the platform was reduced, lizards slipped, causing their bodies to potentially spin out of control.

When the researchers saw how the lizard used its tail to counteract the spin, they created a mathematical model as well as Tailbot -- a toy car equipped with a tail and small gyroscope to sense body position ‑ to better understand the animal's skills. With a tail but no feedback from sensors about body position, Tailbot took a nose dive when driven off a ramp, mimicking a lizard's take-off. When body position was sensed and fed back to the tail motor, however, Tailbot was able to stabilize its body in midair. The actively controlled tail effectively redirected the angular momentum of the body into the tail's swing, as happens with leaping lizards, Full said.

Inertial assisted robotics

Tailbot's design pushed the boundaries of control in robotics in an area researchers call inertial assisted robotics, an attention-grabber at last October's meeting of the International Conference on Intelligent Robots and Systems. The UC Berkeley researchers' paper, presented by Libby and fellow mechanical engineering graduate student Evan Chang-Siu, was one of five finalists there among more than 2,000 robot studies.

"Engineers quickly understood the value of a tail," Libby said, noting that when he dropped Tailbot nose-down, it was able to right itself before it had dropped a foot. "Robots are not nearly as agile as animals, so anything that can make a robot more stable is an advancement, which is why this work is so exciting."

Full and his students are now investigating the role of the tail in controlling pitch, roll and yaw while running.

UC Berkeley coauthors include Full and students Moore, Libby and Chang-Siu, along with Department of Integrative Biology undergraduate Deborah Li and graduate students Ardian Jusufi in the Department of Integrative Biology and Daniel Cohen in the Department of Bioengineering.

The work was funded by the National Science Foundation, including the NSF's Integrative Graduate Education and Research Traineeship (IGERT) program, and the Micro Autonomous Systems Technologies (MAST) consortium, a large group of researchers funded in part by the U.S. Army Research Laboratory that is focused on creating autonomous sensing robots.

Thursday, October 1, 2009

Clues To Reversing Aging Of Human Muscle Discovered


A study led by researchers at the University of California, Berkeley, has identified critical biochemical pathways linked to the aging of human muscle. By manipulating these pathways, the researchers were able to turn back the clock on old human muscle, restoring its ability to repair and rebuild itself.

Young, healthy muscle (left column) appears pink and red. In contrast, the old muscle is marked by scarring and inflammation, as evidenced by the yellow and blue areas. This difference between old and young tissue occurs both in the muscle's normal state and after two weeks of immobilization in a cast. Exercise after cast removal did not significantly improve old muscle regeneration; scarring and inflammation persisted, or worsened in many cases. 
(Credit: Photo by Morgan E. Carlson and Irina M. Conboy, UC Berkeley)


The findings will be reported in the Sept. 30 issue of the journal EMBO Molecular Medicine, a peer-reviewed, scientific publication of the European Molecular Biology Organization.

"Our study shows that the ability of old human muscle to be maintained and repaired by muscle stem cells can be restored to youthful vigor given the right mix of biochemical signals," said Professor Irina Conboy, a faculty member in the graduate bioengineering program that is run jointly by UC Berkeley and UC San Francisco, and head of the research team conducting the study. "This provides promising new targets for forestalling the debilitating muscle atrophy that accompanies aging, and perhaps other tissue degenerative disorders as well."

Wednesday, September 2, 2009

World's Smallest Semiconductor Laser Heralds New Era In Optical Science


Researchers at the University of California, Berkeley, have reached a new milestone in laser physics by creating the world's smallest semiconductor laser, capable of generating visible light in a space smaller than a single protein molecule.

The schematic on the left illustrates light being compressed and sustained in the 5 nanometer gap -- smaller than a protein molecule -- between a nanowire and underlying silver surface. To the right is an electron microscope image of the hybrid design shown in the schematic. (Credit: Courtesy of Xiang Zhang Lab, UC Berkeley)

This breakthrough, described in an advanced online publication of the journal Nature on Aug. 30, breaks new ground in the field of optics. The UC Berkeley team not only successfully squeezed light into such a tight space, but found a novel way to keep that light energy from dissipating as it moved along, thereby achieving laser action.


"This work shatters traditional notions of laser limits, and makes a major advance toward applications in the biomedical, communications and computing fields," said Xiang Zhang, professor of mechanical engineering and director of UC Berkeley's Nanoscale Science and Engineering Center, which is funded by the National Science Foundation (NSF), and head of the research team behind this work.


The achievement helps enable the development of such innovations as nanolasers that can probe, manipulate and characterize DNA molecules; optics-based telecommunications many times faster than current technology; and optical computing in which light replaces electronic circuitry with a corresponding leap in speed and processing power.


While it is traditionally accepted that an electromagnetic wave - including laser light - cannot be focused beyond the size of half its wavelength, research teams around the world have found a way to compress light down to dozens of nanometers by binding it to the electrons that oscillate collectively at the surface of metals. This interaction between light and oscillating electrons is known as surface plasmons.


Scientists have been racing to construct surface plasmon lasers that can sustain and utilize these tiny optical excitations. However, the resistance inherent in metals causes these surface plasmons to dissipate almost immediately after being generated, posing a critical challenge to achieving the buildup of the electromagnetic field necessary for lasing.


Zhang and his research team took a novel approach to stem the loss of light energy by pairing a cadmium sulfide nanowire - 1,000 times thinner than a human hair - with a silver surface separated by an insulating gap of only 5 nanometers, the size of a single protein molecule. In this structure, the gap region stores light within an area 20 times smaller than its wavelength. Because light energy is largely stored in this tiny non-metallic gap, loss is significantly diminished.


With the loss finally under control through this unique "hybrid" design, the researchers could then work on amplifying the light.


"When you are working at such small scales, you do not have much space to play around with," said Rupert Oulton, the research associate in Zhang's lab who first theorized this approach last year and the study's co-lead author. "In our design, the nanowire acts as both a confinement mechanism and an amplifier. It's pulling double duty."


Trapping and sustaining light in radically tight quarters creates such extreme conditions that the very interaction of light and matter is strongly altered, the study authors explained. An increase in the spontaneous emission rate of light is a telltale sign of this altered interaction; in this study, the researchers measured a six-fold increase in the spontaneous emission rate of light in a gap size of 5 nanometers.


Recently, researchers from Norfolk State University reported lasing action of gold spheres in a dye-filled, glasslike shell immersed in a solution. The dye coupled to the gold spheres could generate surface plasmons when exposed to light.


The UC Berkeley researchers used semiconductor materials and fabrication technologies that are commonly employed in modern electronics manufacturing. By engineering hybrid surface plasmons in the tiny gap between semiconductors and metals, they were able to sustain the strongly confined light long enough that its oscillations stabilized into the coherent state that is a key characteristic of a laser.


"What is particularly exciting about the plasmonic lasers we demonstrated here is that they are solid state and fully compatible with semiconductor manufacturing, so they can be electrically pumped and fully integrated at chip-scale," said Volker Sorger, a Ph.D. student in Zhang's lab and study co-lead author.


"Plasmon lasers represent an exciting class of coherent light sources capable of extremely small confinement," said Zhang. "This work can bridge the worlds of electronics and optics at truly molecular length scales."


Scientists hope to eventually shrink light down to the size of an electron's wavelength, which is about a nanometer, or one-billionth of a meter, so that the two can work together on equal footing.


"The advantages of optics over electronics are multifold," added Thomas Zentgraf, a post-doctoral fellow in Zhang's lab and another co-lead author of the Nature paper. "For example, devices will be more power efficient at the same time they offer increased speed or bandwidth."


In addition to the three co-lead authors, other co-authors of the paper are Renmin Ma and Lun Dai from Peking University, and Christopher Gladden and Guy Bartal from Zhang's research group.


This work is supported by the U.S. Air Force Office of Scientific Research and the NSF.


If you like this post, buy me a Pittza at $1!
Reblog this post [with Zemanta]