BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Salt Lake City. Show all posts
Showing posts with label Salt Lake City. Show all posts

Sunday, September 26, 2010

Turning Thoughts into Words A new approach allows more information to be extracted from the brain.


Brain-computer interfaces could someday provide a lifeline to "locked-in" patients, who are unable to talk or move but are aware and awake. Many of these patients can communicate by blinking their eyes, but turning blinks into words is time-consuming and exhausting.

Scientists in Utah have now demonstrated a way to determine which of 10 distinct words a person is thinking by recording the electrical activity from the surface of the brain.
Brian interface: The micro electrodes
shown here were used to record brain
signals in order to decode ten words
from a patient’s thoughts.
Credit: Spencer Kellis, University of Utah


The new technique involves training algorithms to recognize specific brain signals picked up by an array of nonpenetrating electrodes placed over the language centers of the brain, says Spencer Kellis, one of the bioengineers who carried out the work at the University of Utah, in Salt Lake City. The approach used is known as electrocorticography (ECoG). The group was able to identify the words "yes," "no," "hot, "cold," "thirsty," "hungry," "hello," "goodbye," "more," and "less" with an accuracy of 48 percent.

"The accuracy definitely needs to be improved," says Kellis. "But we have shown the information is there."

Individual words have been decoded from brain signals in the past using functional magnetic resonance imaging (fMRI), says Eric Leuthardt, director of the Center for Innovation in Neuroscience and Technology at Washington University School of Medicine in St. Louis, Missouri. This is the first time that the feat has been performed using ECoG, a far more practical and portable approach than fMRI, he says.

Working with colleagues Bradley Greger and Paul House, Kellis placed 16 electrodes on the surface of the brain of a patient being treated for epilepsy. The electrodes recorded signals from the facial motor cortex--an area of the brain that controls face muscles during speech--and over the Wernicke's area, part of the cerebral cortex that is linked with language. To train the algorithm, signals were analyzed as the patient was asked to repeatedly utter the 10 words.

ECoG has long been used to locate the source of epileptic seizures in the brain. But electrodes used are typically several hundred microns in size and are positioned centimeters apart, says Kellis. "The brain is doing processing at a much finer spatial scale than is really detectable by these standard clinical electrodes," he says. The Utah team used a new type of microelectrode array developed by PMT Neurosurgical. The electrodes are much smaller--40 microns in size--and are separated by a couple of millimeters.

It's possible to use less invasive techniques, such as electroencephalography (EEG), which places electrodes on the scalp, to enable brain-to-computer communications. Adrian Owen, a senior scientist in the Cognition and Brain Sciences Unit at the University of Cambridge, UK, has shown that EEG signals can be used to allow people in a persistent vegetative state to communicate "yes" and "no."

But with EEG, many of the signals are filtered out by the skull, says Leuthardt. "What's really nice about ECoG is its potential to give us a lot more information," he says.

Decoding 10 words is "very cool," says Owen, but the accuracy will need to improve dramatically, given the patients the technology is aimed at. "I don't think even 60 percent or 70 percent accuracy is going to work for patients who cannot communicate in any other way and where there is no other margin for verification," he says.

Ultimately, the hope is that ECoG will enable much more sophisticated communication. Last year Leuthardt showed that ECoG could be used to decode vowel and consonant sounds--an approach that might eventually be used to reconstruct a much larger number of complete words.

Tuesday, October 13, 2009

Radio Waves 'See' Through Walls




University of Utah engineers showed that a wireless network of radio transmitters can track people moving behind solid walls. The system could help police, firefighters and others nab intruders, and rescue hostages, fire victims and elderly people who fall in their homes. It also might help retail marketing and border control.

On the left, a person walks around inside a square of 28 radio transceivers (mounted on plastic pipes) in the Warnock Engineering Building's atrium at the University of Utah. The person creates "shadows" in the radio waves, resulting in the image displayed on right, in which the person appears as a reddish-orange-yellow blob. University of Utah engineers also showed this method can "see" through walls to make blurry images of people moving behind the walls. They hope the technique will help police, firefighters and other emergency responders apprehend burglars and rescue hostages, fire victims and others. (Credit: Sarang Joshi and Joey Wilson, University of Utah)


"By showing the locations of people within a building during hostage situations, fires or other emergencies, radio tomography can help law enforcement and emergency responders to know where they should focus their attention," Joey Wilson and Neal Patwari wrote in one of two new studies of the method.

Both researchers are in the university's Department of Electrical and Computer Engineering – Patwari as an assistant professor and Wilson as a doctoral student.

Their method uses radio tomographic imaging (RTI), which can "see," locate and track moving people or objects in an area surrounded by inexpensive radio transceivers that send and receive signals. People don't need to wear radio-transmitting ID tags.

One of the studies – which outlines the method and tests it in an indoor atrium and a grassy area with trees – is awaiting publication soon in IEEE Transactions on Mobile Computing, a journal of the Institute of Electrical and Electronics Engineers.

The study involved placing a wireless network of 28 inexpensive radio transceivers – called nodes – around a square-shaped portion of the atrium and a similar part of the lawn. In the atrium, each side of the square was almost 14 feet long and had eight nodes spaced 2 feet apart. On the lawn, the square was about 21 feet on each side and nodes were 3 feet apart. The transceivers were placed on 4-foot-tall stands made of plastic pipe so they would make measurements at human torso level.

Radio signal strengths between all nodes were measured as a person walked in each area. Processed radio signal strength data were displayed on a computer screen, producing a bird's-eye-view, blob-like image of the person.

A second study detailed a test of an improved method that allows "tracking through walls." That study has been placed on arXiv.org, an online archive for preprints of scientific papers. The study details how variations in radio signal strength within a wireless network of 34 nodes allowed tracking of moving people behind a brick wall.

The method was tested around an addition to Patwari's Salt Lake City home. Variations in radio waves were measured as Wilson walked around inside. The system successfully tracked Wilson's location to within 3 feet.

The wireless system used in the experiments was not a Wi-Fi network like those that link home computers, printers and other devices. Patwari says the system is known as a Zigbee network – the kind of network often used by wireless home thermostats and other home or factory automation.

Wilson demonstrated radio tomographic imaging during a mobile communication conference last year, and won the MobiCom 2008 Student Research Demo Competition. The researchers now have a patent pending on the method.

"I have aspirations to commercialize this," says Wilson, who has founded a spinoff company named Xandem Technology LLC in Salt Lake City.

The research was funded by the National Science Foundation.

How It Works

Radio tomographic imaging (RTI) is different and much less expensive than radar, in which radar or radio signals are bounced off targets and the returning echoes or reflections provide the target's location and speed. RTI instead measures "shadows" in radio waves created when they pass through a moving person or object.

RTI measures radio signal strengths on numerous paths as the radio waves pass through a person or other target. In that sense, it is quite similar to medical CT (computerized tomographic) scanning, which uses X-rays to make pictures of the human body, and seismic imaging, in which waves from earthquakes or explosions are used to look for oil, minerals and rock structures underground. In each method, measurements of the radio waves, X-rays or seismic waves are made along many different paths through the target, and those measurements are used to construct a computer image.

In their indoor, outdoor and through-the-wall experiments, Wilson and Patwari obtained radio signal strength measurements from all the transceivers – first when the rectangle was empty and then when a person walked through it. They developed math formulas and used them in a computer program to convert weaker or "attenuated" signals – which occur when someone creates "shadows" by walking through the radio signals – into a blob-like, bird's-eye-view image of that person walking.

RTI has advantages. "RF [radio frequency] signals can travel through obstructions such as walls, trees and smoke, while optical and infrared imaging systems cannot," the engineers wrote. "RF imaging will also work in the dark, where video cameras will fail."

Even "where video cameras could work, privacy concerns may prevent their deployment," Wilson and Patwari wrote. "An RTI system provides current images of the location of people and their movements, but cannot be used to identify a person."

Would bombardment by radio waves pose a hazard? Wilson says the devices "transmit radio waves at powers 500 times less than a typical cell phone."

"And you don't hold it against your head," Patwari adds.

Radio 'Eyes' to the Rescue

Patwari says the system still needs improvements, "but the plan is that when there is a hostage situation, for example, or some kind of event that makes it dangerous for police or firefighters to enter a building, then instead of entering the building first, they would throw dozens of these radios around the building and immediately they would be able to see a computer image showing where people are moving inside the building."

"They are reusable and you can pick them up afterwards," he says.

The technique cannot distinguish good guys from bad guys, but at least will tell emergency personnel where people are located, he adds.

Patwari says radio tomography probably can be improved to detect people in a burning building, but also would "see" moving flames. "You may be able to look at the image and say this is a spreading fire and these are people," says Patwari.

Wilson believes radio imaging also could be used in "a smarter alarm system. … What if you put radios in your home [built into walls or plugged into outlets] and used tomography to locate people in your home. Not only would your security system be triggered by an intrusion, but you could track the intruder online or over your phone."

Radio tomography even might be used to study where people spend time in stores.

"Does a certain marketing display get people to stop or does it not?" Wilson asks. "I'm thinking of retail stores or grocery stores. They spend a lot of money to determine, 'Where should we put the cereal, where should we put the milk, where should we put the bread?' If I can offer that information using radio tomographic imaging, it's a big deal."

Radio image tracking might help some elderly people live at home. "The elderly want to stay in their homes but don't want a camera in their face all day," Wilson says. "With radio tomographic imaging, you could track where they are in their home, did they get up at the right time, did they go to the medicine cabinet, have they not moved today?"

Wilson says a computer monitoring the radio images might detect an elderly person falling down the stairs based on the unusually fast movement.

He says radio tracking also might be a relatively inexpensive method of border security, and would work in dark and fog unlike cameras.

Another possible use: automatic control of lighting, heating and air conditioning in buildings, says Wilson. Radio tracking might even control sound systems so that the best sound is aimed where people are located, as well as noise cancellation systems which could be aimed automatically at noise sources, Patwari says.
If you like this post, buy me a Pittza at $1!

Reblog this post [with Zemanta]