BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Quantum state. Show all posts
Showing posts with label Quantum state. Show all posts

Wednesday, November 17, 2010

Quantum Memory for Communication Networks of the Future


Researchers from the Niels Bohr Institute at the University of Copenhagen have succeeded in storing quantum information using two 'entangled' light beams. Quantum memory or information storage is a necessary element of future quantum communication networks. The new findings are published in Nature Physics.
The illustration shows the two quantum memories. Each 
memory consists of a glass cell filled with caesium atoms, 
which are shown as small blue and red balls. The light 
beam is sent through the atoms and the quantum 
information is thus transferred from the light to the atoms. 
(Credit: Quantop)

Quantum networks will be able to protect the security of information better than the current conventional communication networks. The cornerstone of quantum communication is a phenomenon called entanglement between two quantum systems, for example, two light beams. Entanglement means that the two light beams are connected to each other, so that they have well defined common characteristics, a kind of common knowledge. A quantum state can -- according to the laws of quantum mechanics, not be copied and can therefore be used to transfer data in a secure way.

In professor Eugene Polzik's research group Quantop at the Niels Bohr Institute researchers have now been able to store the two entangled light beams in two quantum memories. The research is conducted in a laboratory where a forest of mirrors and optical elements such as wave plates, beam splitters, lenses etc. are set up on a large table, sending the light around on a more than 10 meter long labyrinthine journey. Using the optical elements, the researchers control the light and regulate the size and intensity to get just the right wavelength and polarisation the light needs to have for the experiment.

The two entangled light beams are created by sending a single blue light beam through a crystal where the blue light beam is split up into two red light beams. The two red light beams are entangled, so they have a common quantum state. The quantum state itself is information.

The two light beams are sent on through the labyrinth of mirrors and optical elements and reach the two memories, which in the experiment are two glass containers filled with a gas of caesium atoms. The atoms' quantum state contains information in the form of a so-called spin, which can be either 'up' or 'down'. It can be compared with computer data, which consists of the digits 0 and 1. When the light beams pass the atoms, the quantum state is transferred from the two light beams to the two memories. The information has thus been stored as the new quantum state in the atoms.

"For the first time such a memory has been demonstrated with a very high degree of reliability. In fact, it is so good that it is impossible to obtain with conventional memory for light that is used in, for example, internet communication. This result means that a quantum network is one step closer to being a reality," explains professor Eugene Polzik.

Thursday, September 2, 2010

Researchers Create 'Quantum Cats' Made of Light


Researchers at the National Institute of Standards and Technology (NIST) have created "quantum cats" made of photons (particles of light), boosting prospects for manipulating light in new ways to enhance precision measurements as well as computing and communications based on quantum physics.
These colorized plots of electric field values indicate how closely the NIST "quantum cats" (left) compare with theoretical predictions for a cat state (right). The purple spots and alternating blue contrast regions in the center of the images indicate the light is in the appropriate quantum state. (Credit: Gerrits/NIST)

The NIST experiments, described in a forthcoming paper, repeatedly produced light pulses that each possessed two exactly opposite properties -- specifically, opposite phases, as if the peaks of the light waves were superimposed on the troughs. Physicists call this an optical Schrödinger's cat. NIST's quantum cat is the first to be made by detecting three photons at once and is one of the largest and most well-defined cat states ever made from light. (Larger cat states have been created in different systems by other research groups, including one at NIST.)

A "cat state" is a curiosity of the quantum world, where particles can exist in "superpositions" of two opposite properties simultaneously. Cat state is a reference to German physicist Erwin Schrödinger's famed 1935 theoretical notion of a cat that is both alive and dead simultaneously.

"This is a new state of light, predicted in quantum optics for a long time," says NIST research associate Thomas Gerrits, lead author of the paper. "The technologies that enable us to get these really good results are ultrafast lasers, knowledge of the type of light needed to create the cat state, and photon detectors that can actually count individual photons."

The NIST team created their optical cat state by using an ultrafast laser pulse to excite special crystals to create a form of light known as a squeezed vacuum, which contains only even numbers of photons. A specific number of photons were subtracted from the squeezed vacuum using a device called a beam splitter. The photons were identified with a NIST sensor that efficiently detects and counts individual photons. Depending on the number of subtracted photons, the remaining light is in a state that is a good approximation of a quantum cat says Gerrits -- the best that can be achieved because nobody has been able to create a "real" one, by, for instance, the quantum equivalent to superimposing two weak laser beams with opposite phases.

NIST conducts research on novel states of light because they may enhance measurement techniques such as interferometry, used to measure distance based on the interference of two light beams. The research also may contribute to quantum computing -- which may someday solve some problems that are intractable today -- and quantum communications, the most secure method known for protecting the privacy of a communications channel. Larger quantum cats of light are needed for accurate information processing.