BTemplates.com

Powered by Blogger.

Pageviews past week

Quantum mechanics

Auto News

artificial intelligence

About Me

Recommend us on Google!

Information Technology

Popular Posts

Showing posts with label Nature Nanotechnology. Show all posts
Showing posts with label Nature Nanotechnology. Show all posts

Friday, December 9, 2011

One of the World's Smallest Electronic Circuits Created



A team of scientists, led by Guillaume Gervais from McGill's Physics Department and Mike Lilly from Sandia National Laboratories, has engineered one of the world's smallest electronic circuits. It is formed by two wires separated by only about 150 atoms or 15 nanometers (nm).
Scientists have engineered one of the world's smallest electronic
circuits. It is formed by two wires separated by only about 150
atoms or 15 nanometers (nm).
(Credit: Image courtesy of McGill University)

The discovery, published in the journal Nature Nanotechnology, could have a significant effect on the speed and power of the ever smaller integrated circuits of the future in everything from smartphones to desktop computers, televisions and GPS systems.

This is the first time that anyone has studied how the wires in an electronic circuit interact with one another when packed so tightly together. Surprisingly, the authors found that the effect of one wire on the other can be either positive or negative. This means that a current in one wire can produce a current in the other one that is either in the same or the opposite direction. This discovery, based on the principles of quantum physics, suggests a need to revise our understanding of how even the simplest electronic circuits behave at the nanoscale.

In addition to the effect on the speed and efficiency of future electronic circuits, this discovery could also help to solve one of the major challenges facing future computer design. This is managing the ever-increasing amount of heat produced by integrated circuits

Well-known theorist Markus Büttiker speculates that it may be possible to harness the energy lost as heat in one wire by using other wires nearby. Moreover, Buttiker believes that these findings will have an impact on the future of both fundamental and applied research in nanoelectronics.

The research was funded by the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche Nature et Technologies of Quebec, the Canadian Institute for Advanced Research and the Center of Integrated Nanotechnologies at Sandia National Laboratories.

Wednesday, June 29, 2011

Tiny Ring Laser Accurately Detects and Counts Nanoparticles


A tiny doughnut-shaped laser is the latest marvel of silicon microminiaturization, but instead of manipulating bits it detects very small particles. Small particles play a big -- and largely unnoticed -- role in our everyday lives. Virus particles make us sick, salt particles trigger cloud formation, and soot particles sift deep into our lungs and make it harder to breathe.
Whispering-gallery microlasers can count 
and measure nano-scale synthetic or biological 
particles. As this conceptual illustration shows, 
a particle disturbs the lasing "mode" to split 
into two frequencies (shown here as two different 
colors) and the frequency split acts a ruler that 
allows the particle to be measured. The inset 
at the top right shows a particle landing on the 
microlaser (a torus supported by a pedestal). 
Lina He, a graduate student in electrical and 
systems engineering at Washington University 
in St. Louis, and her co-workers demonstrated 
that the microlasers can detect particles 10 
nanometers in radius. Their resolution limit is 
about one nanometer. (Credit: J. Zhu, L. He, 
S. K. Ozdemir, and L. Yang/WUSTL)

The sensor belongs to a category called whispering gallery resonators, which work like the famous whispering gallery in St. Paul's Cathedral in London, where someone on the one side of the dome can hear a message spoken to the wall by someone on the other side. Unlike the dome, which has resonances or sweet spots in the audible range, the sensor resonates at light frequencies.

Light traveling round the micro-laser is disturbed by a particle that lands on the ring, changing the light's frequency. The ring can count the touch-down of as many as 800 nanoparticles before the signals begin to be lost in the noise. By exciting more than one mode in the ring, scientists can double-check the accuracy of the count. And by changing the "gain medium," they can adapt the sensor for water rather than air.

Lan Yang, PhD, assistant professor of electrical and systems engineering at Washington University in St. Louis who leads the team that fabricated the new sensor, says that there is already lively interest in its commercialization in fields ranging from biology to aerosol science. The sensor is described and characterized in the June 26 online edition of Nature Nanotechnology.

Whispering gallery resonator becomes microlaser

A whispering gallery resonator supports "frequency degenerate modes" (modes, or patterns of excitation in the ring, with the same frequency, one traveling clockwise and the other counterclockwise around the ring.

The mode fields have "evanescent tails" that penetrate the surface of the ring and probe the surrounding medium. When a particle lands on one of the "hot spots" it scatters energy from one of the modes into the other, and the modes adopt slightly different resonance frequencies. This is referred to as mode splitting.

In an earlier work, Yang team used mode splitting in a simple glass ring that functioned as a waveguide for light coupled into it from outside. Because the ring was passive, the external-laser had to be an expensive tunable laser so that it could scan a frequency range looking for the ring's resonances to measure mode splitting. (For more information on this sensor see "Tiny sensor takes measure of nanoparticles.")

The new sensor differs from earlier whispering gallery resonators in that it is itself a miniature laser rather than the resonating cavity of an external laser.

The new sensor is also glass but glass laced with atoms of the rare earth elements that serve as a "gain medium." The glass is doped with rare-earth atoms and when an external light source boosts enough of them into an excited state, the ring begins to lase at its own preferred frequency.

When a particle lands on the microlaser, a single lasing line splits into two slightly different frequencies.

A simple way of measuring the frequency splitting is to mix the split laser modes in a photodetector, which produces a "beat frequency" that corresponds to the frequency difference.

"The tiny sensors are mass produced by sol-gel method on silicon wafer, and it is easy to switch the gain medium" says Lina He, a graduate student and first author of the paper. "The resonators are made by mixing the rare-earth ions of choice into a solution of tetraethoxysilane, water and hydrochloric acid. The solution is heated until it becomes viscous and then spin-coated on a silicon wafer and annealed to remove solvents and complete the transition to amorphous glass. The thin film of glass is then etched to create silica disks supported underneath by silicon pillars. As a final step, the rough silica disks are reflowed into smooth toroids by laser annealing."

Active sensor outperforms passive one



"The light used for sensing is generated inside the resonator itself, and so it is purer than the light in the passive sensor," says Yang "When the light is not that pure, you might not be able to see small frequency changes. But the active sensor hits one frequency -- it has a really narrow linewidth -- and so it is much more sensitive."

The microlaser is orders of magnitude more sensitive than the passive resonator, she says. Its effective resolution limit is about one nanometer. One nanometer is to a meter, what a marble is to Earth.

Moreover, because the laser is now in the ring rather than coupled to it, the entire system is simpler and more self contained. "Now you just need a light source to excite the optical medium," says Yang, "and you can use a cheap laser diode for that instead of an expensive tunable laser."

Detecting many particles

The effect of a particle on a lasing mode depends on the particle's "polarizability," which is a function of its size and refractive index. To cover the possibilities, the Washington University team tested the micro-laser's performance with nanoparticles of various sizes made of various materials, including polystyrene (packing peanuts), virions (virus particles) and gold.

As particles enter the "mode volume" of the micro-laser one by one, the scientists can see a discrete upward or downward jump in the beat frequency. Each discrete jump signals the binding of a particle on the ring, and the number of the jumps reflects the number of particles.

Because the "resonator field" traps the particles on the resonator, once landed, they rarely drop off. But the team found they were able to count many particles before the losses induced by the particles made the laser linewidths so broad they couldn't detect changes in frequency splitting due to the latest arrival.

For example, they were able to detect and count as many as 816 gold nanoparticles using the same laser mode.

"When the line broadening is comparable to the change in splitting, then you're done," says Yang. "However, the whole resonator is fabricated on the chip, so you could just move on to the next resonator if necessary."

Doubling up for accuracy

The micro-laser can support more than one laser mode at a time. "By controlling the overlap of the pump light with the gain medium, you can excite more than one laser line," says Sahin Kaya Ozdemir, PhD, a research associate and co-author. "Then when a particle lands on the ring, each laser line will split into two, and generate a beat frequency. So you will have two beat frequencies instead of one."

That's an advantage, he explains, because the beat frequency depends in part on where the particle lands on the ring. If there is only one laser line and the particle falls between "hot spots" it might not be detected. The second beat frequency prevents these "false negatives," ensuring that every particle produces a detectable beat frequency.

Detecting particles in water

The microlasers intended to sense particles in air had been doped with erbium, a rare-earth element whose optical properties are well matched with those of air. In a final experiment designed to see whether this technique could be used to sense particles in water or blood, the team fabricated sensors that were doped with ytterbium rather than erbium.Ytterbium lases at wavelengths with low absorption of light by water

Yang's team has already begun working to make use of the enhanced sensitivity provided by the microlaser for studying various problems. In terms of applications, "the near-term use will be the monitoring of dynamic behaviors of particles in response to environmental and chemical changes at single particle resolution," says Yang.

The next step, the team see is to engineer the surface of these tiny microlasers to detect DNA and individual biological molecules. If the DNA is tagged with engineered nanoparticles, the micro-laser sensor can count individual DNA molecules or fragments of molecules.

Listening to Yang it is hard to escape the impression that you're hearing for the first time about an astonishing device that will one day be as ubiquitous -- and probably as underappreciated -- as the logic gates in our microwaves, cellphones and cars.

The Washington University in St. Louis team behind these results includes: L. He, W. Kim and J. Zhu, graduate students; S. K. Ozdemir, PhD, a research associate, and L. Yang, PhD, assistant professor in electrical and systems engineering.

This work is supported by National Science Foundation.

Wednesday, April 20, 2011

Super-Small Transistor Created: Artificial Atom Powered by Single Electrons


A University of Pittsburgh-led team has created a single-electron transistor that provides a building block for new, more powerful computer memories, advanced electronic materials, and the basic components of quantum computers.
An atomic-scale depiction of the SketchSET shows 
three wires (green bars) converging on the central 
island (center green area), which can house up to 
two electrons. Electrons tunnel from one wire to 
another through the island. Conditions on the third 
wire can result in distinct conductive properties. 
(Credit: Image courtesy of University of Pittsburgh)

The researchers report in Nature Nanotechnology that the transistor's central component -- an island only 1.5 nanometers in diameter -- operates with the addition of only one or two electrons. That capability would make the transistor important to a range of computational applications, from ultradense memories to quantum processors, powerful devices that promise to solve problems so complex that all of the world's computers working together for billions of years could not crack them.

In addition, the tiny central island could be used as an artificial atom for developing new classes of artificial electronic materials, such as exotic superconductors with properties not found in natural materials, explained lead researcher Jeremy Levy, a professor of physics and astronomy in Pitt's School of Arts and Sciences. Levy worked with lead author and Pitt physics and astronomy graduate student Guanglei Cheng, as well as with Pitt physics and astronomy researchers Feng Bi, Daniela Bogorin,and Cheng Cen. The Pitt researchers worked with a team from the University of Wisconsin at Madison led by materials science and engineering professor Chang-Beom Eom, including research associates Chung Wun Bark, Jae-Wan Park, and Chad Folkman. Also part of the team were Gilberto Medeiros-Ribeiro, of HP Labs, and Pablo F. Siles, a doctoral student at the State University of Campinas in Brazil.

Levy and his colleagues named their device SketchSET, or sketch-based single-electron transistor, after a technique developed in Levy's lab in 2008 that works like a microscopic Etch A SketchTM, the drawing toy that inspired the idea. Using the sharp conducting probe of an atomic force microscope, Levy can create such electronic devices as wires and transistors of nanometer dimensions at the interface of a crystal of strontium titanate and a 1.2 nanometer thick layer of lanthanum aluminate. The electronic devices can then be erased and the interface used anew.

The SketchSET -- which is the first single-electron transistor made entirely of oxide-based materials -- consists of an island formation that can house up to two electrons. The number of electrons on the island -- which can be only zero, one, or two -- results in distinct conductive properties. Wires extending from the transistor carry additional electrons across the island.

One virtue of a single-electron transistor is its extreme sensitivity to an electric charge, Levy explained. Another property of these oxide materials is ferroelectricity, which allows the transistor to act as a solid-state memory. The ferroelectric state can, in the absence of external power, control the number of electrons on the island, which in turn can be used to represent the 1 or 0 state of a memory element. A computer memory based on this property would be able to retain information even when the processor itself is powered down, Levy said. The ferroelectric state also is expected to be sensitive to small pressure changes at nanometer scales, making this device potentially useful as a nanoscale charge and force sensor.

The research in Nature Nanotechnology also was supported in part by grants from the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. Army Research Office, the National Science Foundation, and the Fine Foundation.

Story Source:The above story is reprinted from materials provided by University of Pittsburgh.

Tuesday, February 15, 2011

Next-Generation Electronic Devices: Conduction, Surface States in Topological Insulator Nanoribbons Controlled


In recent years, topological insulators have become one of the hottest topics in physics. These new materials act as both insulators and conductors, with their interior preventing the flow of electrical currents while their edges or surfaces allow the movement of a charge.
Bismuth telluride nanoribbon crystalline structure. 
(Credit: Image courtesy of University 
of California - Los Angeles)

Perhaps most importantly, the surfaces of topological insulators enable the transport of spin-polarized electrons while preventing the "scattering" typically associated with power consumption, in which electrons deviate from their trajectory, resulting in dissipation.

Because of such characteristics, these materials hold great potential for use in future transistors, memory devices and magnetic sensors that are highly energy efficient and require less power.

In a study published Feb. 13 in Nature Nanotechnology, researchers from UCLA's Henry Samueli School of Engineering and Applied Science and from the materials division of Australia's University of Queensland show the promise of surface-conduction channels in topological insulator nanoribbons made of bismuth telluride and demonstrate that surface states in these nanoribbons are "tunable" -- able to be turned on and off depending on the position of the Fermi level.

"Our finding enables a variety of opportunities in building potential new-generation, low-dissipation nanoelectronic and spintronic devices, from magnetic sensing to storage," said Kang L. Wang, the Raytheon Professor of Electrical Engineering at UCLA Engineering, whose team carried out the research.

Bismuth telluride is well known as a thermoelectric material and has also been predicted to be a three-dimensional topological insulator with robust and unique surface states. Recent experiments with bismuth telluride bulk materials have also suggested two-dimensional conduction channels originating from the surface states. But it has been a great challenge to modify surface conduction, because of dominant bulk contribution due to impurities and thermal excitations in such small-band-gap semiconductors.

The development of topological insulator nanoribbons has helped. With their large surface-to-volume ratios, these nanoribbons significantly enhance surface conditions and enable surface manipulation by external means.

Wang and his team used thin bismuth telluride nanoribbons as conducting channels in field-effect transistor structures. These rely on an electric field to control the Fermi level and hence the conductivity of a channel. The researchers were able to demonstrate for the first time the possibility of controlling surface states in topological insulator nanostructures.

"We have demonstrated a clear surface conduction by partially removing the bulk conduction using an external electric field," said Faxian Xiu, a UCLA staff research associate and lead author of the study. "By properly tuning the gate voltage, very high surface conduction was achieved, up to 51 percent, which represents the highest values in topological insulators."

"This research is very exciting because of the possibility to build nanodevices with a novel operating principle," said Wang, who is also associate director of the California NanoSystems Institute (CNSI) at UCLA. "Very similar to the development of graphene, the topological insulators could be made into high-speed transistors and ultra-high-sensitivity sensors."

The new findings shed light on the controllability of the surface spin states in topological insulator nanoribbons and demonstrate significant progress toward high surface electric conditions for practical device applications. The next step for Wang's team is to produce high-speed devices based on their discovery.

"The ideal scenario is to achieve 100 percent surface conduction with a complete insulating state in the bulk," Xiu said. "Based on the current work, we are targeting high-performance transistors with power consumption that is much less than the conventional complementary metal-oxide semiconductors (CMOS) technology used typically in today's electronics."

Study collaborators Jin Zou, a professor of materials engineering at the University of Queensland; Yong Wang, a Queensland International Fellow; and Zou's team at the division of materials at the University of Queensland contributed significantly to this work. A portion of the research was also done in Alexandros Shailos' lab at UCLA.

The study was funded by the Focus Center Research Program -- Center on Functional Engineered Nano Architectonics (FENA) at UCLA Engineering; the U.S. Defense Advanced Research Projects Agency (DARPA); and the Australian Research Council. The research on topological insulators was pioneered by FENA's Shoucheng Zhang, a professor of physics at Stanford University.